Effect of thermal annealing on structural and optical properties of In doped Ge-Se-Te chalcogenide thin films

Open access

Abstract

Thin films of Ge10−xSe60Te30Inx (x = 0, 2, 4 and 6) were developed by thermal evaporation technique. The annealing effect on the structural properties of Ge10−xSe60Te30Inx (x = 0, 2, 4 and 6) films has been studied by X-ray diffraction (XRD). The XRD results indicate amorphous nature of the as-prepared films whereas crystalline phases in annealed films were identified. Structural parameters such as average crystallite size, strain, and dislocation were determined for different annealing temperatures. Effect of annealing on optical constants of prepared films has been explored using UV-Vis spectrophotometer in the wavelength range of 400 nm to 1000 nm. Various optical constants were determined depending on annealing temperature. It has been noticed that the film transparency and optical bandgap EG have been reduced whereas the absorption coefficient α and extinction coefficient k increased with increasing annealing temperature. It was found that the prepared samples obey the allowed direct transition. The reduction in optical bandgap with annealing temperature has been described by Mott and Davis model. Due to annealing dependence of the optical parameters, the investigated material could be utilized for phase change memory devices.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hart S.D. Maskaly G.R. Temelkuran B. Prideaux P.H. Joannopoulos J.D. Fink Y. Science 296 (2002) 510.

  • [2] Nicolas H. Laniel J.M. Valle R. Villeneuve A. Opt. Lett. 28 (2003) 965.

  • [3] Ganjoo A. Jain H. Yu C. Song R. Ryan J.V. Irudayaraj J. Ding Y.G. Pantano C.G. J. Non-Cryst. Solids 352 (2006) 584.

  • [4] Singh P.K. Dwivedi D.K. Ferroelectrics 520 (2017) 256.

  • [5] Al-Agela F.A. Al-Arfajb E.A. Al-Marzoukia F.M. Khan S.A. Al-Ghamdi A.A. Prog. Nat. Sci. 23 (2013) 139.

  • [6] Zakery A. Elliott S.R. Optical Nonlinearities in Chalcogenide Glasses and their Applications Springer New York 2007.

  • [7] Mohamed M. Mater. Res. Bull. 65 (2015) 840.

  • [8] Khan S.A. Zulfequar M. Hussain M. Physica B 324 (2002) 266.

  • [9] El-Korashy A. Bakry A. Abdel-Rahim M.A. El-Sattar M.A. Physica B 391 (2007) 266.

  • [10] Fayek A.A. El-Kar M. Hassanien A.S. Chem. Phys. 70 (2001) 231.

  • [11] Popescu M.A. Non-Crystalline Chalcogenides Springer Science & Business Media 2001.

  • [12] Boolchand P. (Ed.) Insulating and Semiconducting Glass World Scientific New Jersey 2000.

  • [13] Cui S. Chahal R. Boussard-Pledel C. Nazabal V. Doualan J.L. Troles J. Lucas J. Bureau B. Molecules 18 (2013) 5373.

  • [14] Sung-Min Y. Nam-Yeal L. Sang-Ouk R. KyuJeong C. Park Y.S. Seung-Yun L. ByoungGon Y. Myung-Jin K. Se-Young C. Wuttig M. IEEE Electron. Device. Lett. 27 (2006) 445.

  • [15] Lu Y. Song S. Shen X. Wu L. Song Z. Liu B. Dai S. Nie Q. ECS Solid State Lett. 2 (2013) 94.

  • [16] Svoboda R. Kincl M. Malek J. J Alloy. Compd. 644 (2015) 40.

  • [17] Abdel-Rahim M.A. Abdel-Latief A.Y. AbdElsalamThermochim. Acta 573 (2013) 57.

  • [18] Tripathi S.K. Sharma V. Thakur A. J Non-Cryst. Solids 351 (2005) 2468.

  • [19] Afifi M.A. Hegab N.A. Bekheet A.E. Sharaf E.R. Physica B 404 (2009) 2172.

  • [20] Khan S.A. Zulfequar M. Husain M. Physica B 324 (2002) 336.

  • [21] Abdinov A.S. Akperov Y.G. Mamdov V.K. Solaev E.Y. Sov. Phys. Semicond. 14 (1980) 440.

  • [22] Kumar H. Mehta N. Glass Phys. Chem. 39 (2013) 490.

  • [23] Kumar H. Mehta N. J. Adv. Phys. 2 (2013) 163.

  • [24] Raouf A.H. El-MallawanyTellurite Glasses Handbook: Physical Properties and Data 2nd ed. CRC Press London New York (2012).

  • [25] Dwivedi D.K. Pathak H.P. Shukla R.K. Kumar A. Optik 126 (2015) 635.

  • [26] Pathak H.P. Shukla N. Kumar V. Dwivedi D.K. Opt. Mater. 52 (2016) 584.

  • [27] Bureau B. Hua Zhang X. Smektala F. J. Non-Cryst. Solids 345 – 346 (2004) 276.

  • [28] Padiyan D.P. Mainkani A. Murali K.R. Mater. Chem. Phys. 88 (2004) 250.

  • [29] Kumar P. Bindra K.S. Suri N. Thngaraj R. J. Phys. D: Appl. Phys. 39 (2006) 642.

  • [30] Scherrer P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse 2 1918 p. 98.

  • [31] Wilson A.J.P. Mathematical Theory of X-ray Powder Diffractometry Cordon and Breach New York 1963.

  • [32] Al-Ghamdi A.A. Vacuum 80 (2006) 400.

  • [33] Al-Agel F.A. Al-Arfaj E.A. Al-Marzouki F.M. Khan S. A. Al-Ghamdi A.A. Prog. Nat. Sci. 23 (2013) 139.

  • [34] Khan Z.H. Salah N. Habib S. Al-Ghamdi A.A. Khan S. A. Opt. Laser Technol. 44 (2012) 6.

  • [35] Tauc J. Amorp and Liquid Semic. in: Tauc J. (Ed.) Plenum Press New York 1979.

  • [36] Abdel-Rahim M.A. Hafiz M.M. Mahmoud A.Z. Solid State Sci. 48 (2015) 125.

  • [37] Urbach F. Phys. Rev. 92 (1953) 1324.

  • [38] Olley J.A. Solid State Commun. 13 (1973) 1437.

  • [39] Abdel-Rahim M.A. Hafez M.M. Elwhab A. Alwany B. Opt. Laser Technol. 44 (2012) 1116.

  • [40] Davis E.A. Mott N.F. Philos. Mag. 22 (1970) 903.

  • [41] Chaudhri S. Biswas S.K. J. Non-Cryst. Solids 54 (1983) 179.

  • [42] Hasegawa S. Kitagawa M. Solid State Commun. 27 (1978) 855.

  • [43] Nyakotyo H. Sathiaraj T.S. Muchuweni E. Opt. Laser Technol. 92 (2017) 182.

  • [44] Neet U. Zulfequar M. J. Alloy. Compd. 576 (2013) 103.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 94 94 40
PDF Downloads 92 92 31