Structural and surface analysis of chemical vapor deposited boron doped aluminum nitride thin film on aluminum substrates

Open access

Abstract

Chemical vapor deposition (CVD) process was conducted for synthesis of boron (B) doped aluminum nitride (B-AlN) thin films on aluminum (Al) substrates. To prevent melting of the Al substrates, film deposition was carried out at 500 °C using tert-buthylamine (tBuNH2) solution delivered through a bubbler as a nitrogen source instead of ammonia gas (NH3). B-AlN thin films were prepared from three precursors at changing process parameters (gas mixture ratio). X-ray diffraction (XRD) technique and atomic force microscope (AFM) were used to investigate the structural and surface properties of B-AlN thin films on Al substrates. The prepared thin films were polycrystalline and composed of mixed phases {cubic (1 1 1) and hexagonal (1 0 0)} of AlN and BN with different orientations. Intensive AlN peak of high intensity was observed for the film deposited at a flow rate of the total gas mixture of 25 sccm. As the total gas mixture flow decreased from 60 sccm to 25 sccm, the crystallite size of AlN phase increased and the dislocation density decreased. Reduced surface roughness (10.4 nm) was detected by AFM for B-AlN thin film deposited on Al substrate using the lowest flow rate (25 sccm) of the total gas mixture.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Feng Z.C. III-Nitride Semiconductor MaterialsWorld Scientific Taiwan 2006.

  • [2] Chaudhuri J. Nyakiti L. Lee R.G. Gu Z. Edgar J.H. Wen J.G. Mater. Charact. 58 (2007) 672.

  • [3] Olivares J. González-Castilla S. Clement M. Sanz-Hervás A. Vergara L. Sangrador J. Iborra E. Diam. Relat. Mater. 16 (2007) 1421.

  • [4] Kar J.P. Bose G. Tuli S. Scripta Mater. 54 (2006) 1755.

  • [5] Zhang J.X. Cheng H. Chen Y.Z. Uddin A. Yuan S. Geng S.J. Zhang S. Surf. Coat. Tech. 198 (2005) 68.

  • [6] Xu X.H. Wu H.S. Zhang C.J. Jin Z.H. Thin Solid Films 388 (2001) 62.

  • [7] Vispute R.D. Narayan J. Wu H. Jagannadham K. J. Appl. Phys. 77 (1995) 431.

  • [8] Vispute R.D. Wu H. Narayan J. Appl. Phys. Lett. 67 (1995) 1549.

  • [9] Lu H. Schaff WI. J. Hwang J. Wu H. Koley G. Eastman L.F. Appl. Phys. Lett. 79 (2001) 1489.

  • [10] Guerrero R.M. Garcia J.R.V. Superficie y Vacio 9 (2001) 82.

  • [11] Morita M. Uesugi N. Isogai S. Tsubouchi K. Mikoshiba N. Jpn. J. Appl. Phys. 20 (1981) 17.

  • [12] Chubachi Y. Sato KI. Kojima K. Thin Solid Films 122 (1984) 259.

  • [13] Andrew R.B. OpenStax CNX. July 14 (2009).

  • [14] Roman Y.G. Adriaansen A.P.M. Thin Solid Films 169 (1989) 241.

  • [15] Egashira Y. Kim H.J. Komiyama H. J. Am. Ceram. Soc. 77 (1994) 2009.

  • [16] Harris H. Biswas N. Temkin H. Gangopadhyay S. Strathman M. J. Appl. Phys. 90 (2001) 5825.

  • [17] Azema N. Durand J. Berjoan R. Dupuy C. Cot L. J. Eur. Ceram. Soc. 8 (1991) 291.

  • [18] Gordon R.G. Hoffman D.M. Riaz U. J. Mater. Res. 6 (1991) 5.

  • [19] Dupuie J.L. Gulari E. J. Vac. Sci. Technol. A 10 (1992) 18.

  • [20] Jones A.C. Rushworth S.A. Houlton D.J. Roberts J.S. Roberts V. Whitehouse C.R. Critchlow G.W. Chem. Vapor Deposit 2 (1996) 5.

  • [21] Roberts V. Roberts J.S. Jones A.C. Rushworth S. In MRS online proceedings Cambridge University Press London 1995 p. 395.

  • [22] Rushworth S.A. Brown J.R. Houlton D.J. Jones A.C. Roberts V. Roberts J.S. Critchlow G.W. Adv. Mater. Opt. Elec. 6 (1996) 119.

  • [23] Jones A.C. Auld J. Rushworth S.A. Houlton D.J. Critchlow G.W. J. Mater. Chem. 4 (1996) 1591.

  • [24] Wistrela E. Bittner A. Schneider M. Reissner M. Schmid U. J. Appl. Phys. 121 (2017) 115302.

  • [25] Pan D. Jian J. K. Sun Y. F. Wu R. J. Alloy. Compd. 519 (2012) 41.

  • [26] Xiong J. Guo P. Guo F. Sun X. Gu H. Mater. Lett. 117 (2014) 276.

  • [27] Endo Y. Sato T. Kawamura Y. Yamamoto M. Mater. Trans. 48 (2007) 465.

  • [28] Felmetsger V.V. Mikhov M.K. 2011 IEEE Int. Ultrasonics Sympos. Proc. (2011) 835.

  • [29] Molina S.I. Sanchez A.M. Pacheco F.J. Garcia R. Sánchez-Garcia M.A. Sanchez F.J. Calleja E. Appl. Phys. Lett. 74 (1999) 3362.

  • [30] Ong Z.Y. Shanmugan S. Mutharasu D. IJETT 17 (4) (2014) 192.

  • [31] Pierson H.O. Handbook of chemical vapor deposition: principles technology and applications William Andrew Publishing New York 1999.

  • [32] Song J.H. Huang J.L. Lu H.H. Sung J.C. Thin Solid Films 516 (2007) 223.

  • [33] Witthaut M. Cremer R. Reichert K. Neuschütz D. Thin Solid Films 377 (2000) 478.

  • [34] Gordillo G. Flrez J.M. Hernandez L.C. Sol. Energ. Mat. Sol. C. 37 (1995) 273.

  • [35] Perry A.J. J. Vac. Sci. Tech. A 8 (1990) 1351.

  • [36] Gerlich D. Dole S.L. Slack G.A. J. Phys. Chem. Solids 47 (1986) 437.

  • [37] http://www.ioffe.ru/SVA/NSM/Semicond/BN/mechanic.html accessed on: 08.13.2014.

  • [38] Thokala R. Chaudhuri J. Thin Solid Films 266 (1995) 189.

  • [39] Stokes A.R. Wilson A.C.J. Proc. Phys. Soc. 56 (1944) 174.

  • [40] Pal U. Samanta D. Ghoral S. Samantaray B.K. Chaudhuri A.K. J. Phys. D: Appl. Phys. 25 (1992) 1488.

  • [41] Cullity B.D. Elements of X-ray Diffraction 2nd ed. Addition-Wesley London 1978.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 85 85 25
PDF Downloads 54 54 22