Tapered fiber sensor in the near infrared wavelength

Open access

Abstract

Simulated transmission spectra for tapered fibers with no taper, one taper and two tapers in the near infrared wavelength range, calculated by Finite-Difference-Time-Domain method are currently presented. Transmission peak positions tend to shift to the shorter wavelength when the taper deformation is added to the fiber or the taper width gets narrower. The thickness sensitivity for the tapered structures with different taper thicknesses is about 2.28e-3 nm·μm−1. There is an interference structure in the electric field distribution images, which reveals in the fiber structures. The transmission spectra for the fiber without taper, one taper and two-tapered structures were simulated in near infrared wavelength by FDTD. The transmission spectra for tlated in near infrared wavelength by FDTD. The sensitivity of the fiber was about 50 nm × RIU−1 and it had better refractive index detection. The tapered fiber can be applied to the bio-chemical sensors and physical deformation testing.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Amanda J.H. Shengli Z. George C.S. Richard P.V.D. J. Phys. Chem. B 108 (2004) 109.

  • [2] Jiangyan L. Haiqiang M. Optik 124 (2013) 6419.

  • [3] Jiangyan L. Lin G. Jinxin F. Zhiyuan L. Chinese Phys. B 22 (2013) 502.

  • [4] Jiangyan L. Kangsheng Q. Haiqiang M. Chinese Phys. B 23 (2014) 429.

  • [5] Jiangyan L. Yilei H. Jinxin F. Zhiyuan L. J. Appl. Phys. 107 (2001) 667.

  • [6] Jiangyan L. Zhiyuan L. Haifang Y. Aizi J. J. Appl. Phys. 104 (2008) 114303-1.

  • [7] Jorgenson R.C. Yee S.S. Sensor. Actuat. B-Chem. 12 (1993) 213.

  • [8] Jensen J.B. Hoiby P.E. Emiliyanov G. Bang O. Pedersen L.H. Bjarklev A. Opt. Express 13 (2005) 5883.

  • [9] Chinowsky T.M. Sensor. Actuat. B-Chem. 54 (1999) 89.

  • [10] Chinowsky T.M. Yee S.S. Sensor. Actuat. B-Chem. 51 (1998) 321.

  • [11] Johnston K.S. Sensor. Actuat. B-Chem. 54 (1999) 80.

  • [12] Krattiger B. Appl. Optics 32 (1993) 956.

  • [13] Matsuura Y. Harrington J. J. Opt. Soc. Am. A 14 (1997) 1255.

  • [14] Stellman C.M. Sensor. Actuat. B-Chem. 46 (1998) 56.

  • [15] Tarigan H.J. Anal. Chem. 68 (1996) 1752.

  • [16] Weigl B.H. Wolfbeis O.S. Anal. Chem. 66 (1994) 3323.

  • [17] Wolfbeis O.S. Trends Anal. Chem. 15 (1996) 225.

  • [18] Knight J.C. Birks T.A. Russell P.S.J. Atkin D.M. Opt. Lett. 21 (1996) 1547.

  • [19] Birks T.A. Knight J.C. Russel P.S.J. Opt. Lett. 22 (1997) 961.

  • [20] Eijkeleborg M.A.V. Large M.C.J. Argvros A. Zagari J. Manos S. Issa N.A. Assett B. Fleming S. McPhedran R.C. Desterke C.M. Ninorovici N.A.P. Opt. Express 9 (2001) 319.

  • [21] Monro T.M. West Y.D. Hewak D.W. Broderick N.G.R. Richardson D.J. Electron Lett. 23 (2000) 1998.

  • [22] Newby K. Reichert W.M. Andrade J.D. Benner R.E. Appl. Optics 23 (1984) 1812.

  • [23] Culshaw B. Muhammad F. Stewart G. Murray S. Pinchbeck D. Norris J. Cassidy S. Wilkinson M. Williams D. Crisp I. Ewyk R.V. McGhee A. Electron Lett. 28 (1992) 2232.

  • [24] Hale Z.M. Payne F.P. Proc. IEE. Coll. Fib. Opt. Sen. Tech. Dig. Num. 128 (1992 81.

  • [25] Hoo Y.L. Jin W. Ho H.L. Wang D.N. Windeler R.S. Opt. Eng. 41 (2002) 8.

  • [26] Jensen J.B. Pedersen L.H. Hoiby P.E. Nielsen L.B. Hansen T.P. Folkenberg J.R. Riishede J. Noordegraaf D. Nielsen K. Carlsen A. Bjarklev A. Opt. Lett. 29 (2004) 1974.

  • [27] Wang H.P. Wang Y.C. Leung P.T. Thin solid films 425 (2003) 135.

  • [28] Saracoglu O.G. Hayber S.E. Sensors-Basel 16 (2016) 2094.

  • [29] Borecki M. Proc. SPIE. Opt. Fib.-Appl. 5952 (2005) 595218 1.

  • [30] Iadicicco A. Campopiano S. Cutolo A. Giordano M. Cusano A. IEEE Photonic Tech. L. 17 (2005) 1250.

  • [31] Kruszewski J. Borecki M. Beblowska M. Proc. SPIE. 5576 (2004) 234.

  • [32] Paipulas D. Mikutis M. Sirutkaitis V. Juodkazis S. Proc. SPIE. 8786 (2013) 87860D.

  • [33] Xiaomei S. Abraham H.D. Proc. SPIE. 2391 (1995) 512.

  • [34] Zhao Y. Liao Y.B. Sensor. Actuat. B-Chem. 86 (2002) 63.

  • [35] Borecki M. Doroz P. Prus P. Psaczolkowski P. Szmidt J. Korwin-Pawlowski M.L. Frydrych J. Kocjubinski A. Duk M. Int. J. Adv. Sys. Meas. 7 (2014) 57.

  • [36] Ilev I.K. Wayant R.W. Byrnes K.R. Anders J.J. Opt. Lett. 27 (2002) 1695.

Suche
Zeitschrifteninformation
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
Gesamte Zeit Letztes Jahr Letzte 30 Tage
Abstract Views 0 0 0
Full Text Views 34 33 5
PDF Downloads 22 22 6