Investigation, analysis and comparison of current-voltage characteristics for Au/Ni/GaN Schottky structure using I-V-T simulation

Open access

Abstract

In this work, we have presented a theoretical study of Au/Ni/GaN Schottky diode based on current-voltage (I-V) measurement for temperature range of 120 K to 400 K. The electrical parameters of Au/Ni/GaN, such as barrier height (Φb), ideality factor and series resistance have been calculated employing the conventional current-voltage (I-V), Cheung and Chattopadhyay method. Also, the variation of Gaussian distribution (P (Φb)) as a function of barrier height (Φb) has been studied. Therefore, the modified ((1n(I0T2)-(q2σs022kT2)=1n(AA*)-qB0kT)vs.(1kT)) relation has been extracted from (I-V) characteristics, where the values of ΦB0 and ASiuml* have been found in different temperature ranges. The obtained results have been compared to the existing experimental data and a good agreement was found.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Lakhdar N. Djeffal F. Dibi Z. AIP Conf. Proc. 1292 (2010) 173.

  • [2] Lakhdar N. Djeffal F. Microelectron. Reliab. 56 (2012) 958.

  • [3] Ravinandan M. Rao P.K. Reddy V.R. Semicond. Sci. Tech. 24 (2009) 035004.

  • [4] Reddy V.R. Manjunath V. Janardhanam V. Kil Y.-H. Choi C.-J. Electron. Mater. 43 (2014) 3499.

  • [5] Yildirim N. Ejderha K. Turut A. J. Appl. Phys. 108 (2010) 114506.

  • [6] Asha B. Harsha C.s. Padma R. Reddy V.R. J. Electron. Mater. 47 (2018) 4140.

  • [7] Atlas D.S. Silvaco International Software Santa Clara CA USA 2005.

  • [8] Dogan H. Elagoz S. Physica. E 63 (2014) 186.

  • [9] Hathwar R. Dutta M. Koeck F.A. Nemanich R.J. Chowdhury S. Goodnick S.M. J. Appl. Phys. 119 (2016) 225703.

  • [10] Fritah A. Saadoune A. Dehimi L. Abay B. Philos. Mag. 96 (2016) 2009.

  • [11] Bergman J. Diam Relat. Mater. 6 (1997) 1324.

  • [12] Khan I.A. Cooper J.A. IEEE T. Electron. Dev. 47 (2000) 269.

  • [13] Padma R. Lakshmi B.P. Reddy M.S.P. Reddy V.R. SuperlatticeMicrost. 56 (2013) 64.

  • [14] Akkal B. Benamara Z. Boudissa A. Bouiadjra N.B. Amrani M. Bideux L. Gruzza B. Mater. Sci. Eng. B-Adv. 55 (1998) 162.

  • [15] Janardhanam V. Kumar A.A. Reddy V.R. Reddy P.N. J. Alloy. Compd. 485 (2009) 467.

  • [16] Sullivan J. Tung R. Pinto M. Graham W. J. Appl. Phys. 70 (1991) 7403.

  • [17] Aydogan S. Saglam M. Türüt A. Appl Surf Sci. 250 (2005) 43.

  • [18] Cheung S. Cheung N. Appl. Phys. Lett. 49 (1986) 85.

  • [19] Kocyigit A. Orak I. Çaldiran Z. Turut A. J. Mater Sci-Mater El. 28 (2017) 17177.

  • [20] Chattopadhyay P. Solid State Electron. 38 (1995) 739.

  • [21] Karatas S. Yildirim N. Türüt A. SuperlatticeMicrost. 64 (2013) 483.

  • [22] Güllü Ö. Aydogan S. Türüt A. Microelectron. Eng. 85 (2008) 1647.

  • [23] Ocak Y. Kulakci M. Kiliçoglu T. Turan R. Akkiliç K. Synthetic Met. 159 (2009) 1603.

  • [24] Dogan H. Yildirim N. Orak I. Elagöz S. Turut A. Physica B. 457 (2015) 48.

  • [25] Zhu S. Detavernier C. van Meirhaeghe R. Cardon F. Ru G.-P. Qu X.-P. Li B.-Z. Solid State Electron. 44 (2000) 1807.

  • [26] Werner J.H. Güttler H.H. J. Appl. Phys. 69 (1991) 1522.

  • [27] Shetty A. Roul B. Mukundan S. Mohan L. Chandan G. Vinoy K. Krupanidhi S. AIP Adv. 5 (2015) 097103.

  • [28] Zeghdar K. Dehimi L. Saadoune A. Sengouga N. J. Semicond. 36 (2015) 124002.

  • [29] Lakshmi B.P. Reddy M.S.P. Kumar A.A. Reddy V.R. Curr. Appl. Phys. 12 (2012) 765.

  • [30] Elhaji A. Evans-Freeman J. El-Nahass M. Kappers M. Humphries C. Mat. Sci. Semicon. Proc. 17 (2014) 94.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 167 167 37
PDF Downloads 117 117 21