SHI irradiation induced modifications of plasmonic properties of Ag-TiO2 thin film and study using FDTD simulation

Open access

Abstract

Modifications in morphological and plasmonic properties of heavily doped Ag-TiO2 nanocomposite thin films by ion irradiation have been observed. The Ag-TiO2 nanocomposite thin films were synthesized by RF co-sputtering and irradiated by 90 MeV Ni ions with different fluences. The modifications in morphological, structural and plasmonic properties of the nanocomposite thin films caused by ion irradiation were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-Vis absorption spectroscopy. The thickness of the film and concentration of Ag were assessed by Rutheford backscattering (RBS) as ~50 nm and 56 at.%, respectively. Interestingly, localized surface plasmon resonance (LSPR) appeared at 566 nm in the thin film irradiated at the fluence of 1 × 1013 ions/cm2. This plasmonic behavior can be attributed to the increment in interparticle separation. Increased interparticle separation diminishes the plasmonic coupling between the nanoparticles and the LSPR appears in the visible region. The distribution of Ag nanoparticles obtained from HR-TEM images has been used to simulate absorption spectra and electric field distribution along Ag nanoparticles with the help of FDTD (Finite Difference Time Domain). Further, the ion irradiation results (experimental as well simulated) were compared with the annealed nanocomposite thin film and it was found that optical properties of heavily doped metal in the metal oxide matrix can be more improved by ion irradiation in comparison with thermal annealing.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Muduli S. Game O. Dhas V. Vijayamohanan K. Bogle K.A. Valanoor N. Ogale S.B. Sol. Energy 86 (2012) 1428.

  • [2] Zhang X. Liu J. Li S. Tan X. Yu M. Du J. RSC Adv. 3 (2013) 18587.

  • [3] Kumar A. Patel A.S. Mohanty T. J. Phys. Chem. C 116 (2012) 20404.

  • [4] Wodka D. Bielanśka E. Socha R.P. Elżbieciak Wodka M. Gurgul J. Nowak P. Warszynśki P. Kumakiri I. ACS Appl. Mater. Interfaces 2 (2010) 1945.

  • [5] Chen D. Chen Q. Ge L. Yin L. Fan B. Wang H. Lu H. Xu H. Zhang R. Shao G. Appl. Surf. Sci. 284 (2013) 921.

  • [6] Yu B. Leung K.M. Guo Q. Lau W.M. Yang J. Nanotechnology 22 (2011) 115603.

  • [7] Akhavan O. J. Colloid Interface Sci. 336 (2009) 117.

  • [8] Mishra Y.K. Avasthi D.K. Kulriya P.K. Singh F. Kabiraj D. Tripathi A. Pivin J.C. Bayer I.S. Biswas A. Appl. Phys. Lett. 90 (2007) 073110.

  • [9] Kumar M. Sandeep C.S.S. Kumar G. Mishra Y.K. Philip R. Reddy G.B. Plasmonics 9 (2014) 129.

  • [10] Mohapatra S. Mishra Y.K. Warrier A.M. Philip R. Sahoo S. Arora A.K. Avasthi D.K. Plasmonics 7 (2012) 25.

  • [11] Avasthi D.K. Mishra Y.K. Singhal R. Kabiraj D. Mohapatra S. Mohanta B. Gohil N.K. Singh N. J. Nanosci. Nanotechnol. 10 (2010) 2705.

  • [12] Singhal R. Kabiraj D. Kulriya P.K. Pivin J.C. Chandra R. Avasthi D.K. Plasmonics 8 (2013) 295.

  • [13] Noguez C. J. Phys. Chem. C 111 (2007) 3806.

  • [14] Ghosh S.K. Pal T. Chem. Rev. 107 (2007) 4797.

  • [15] Kelly K.L. Coronado E. Zhao L.L. Schatz G.C. J. Phys. Chem. B 107 (2003) 668.

  • [16] Sung Y.M. Energy Procedia 34 (2013) 582.

  • [17] Richards B.S. Sol. Energy Mater. Sol. Cells 79 (2003) 369.

  • [18] Wei-guo X. An-min C. Qiang Z. J. Wuhan Univ. Technol. Sci. Ed. 19 (2004) 16.

  • [19] Chen F. Cao F. Li H. Bian Z. Langmuir 31 (2015) 3494.

  • [20] Šegota S. Ćurković L. Ljubas D. Svetličić V. Houra I.F. Tomašić N. Ceram. Int. 37 (2011) 1153.

  • [21] Duraisamy N. Muhammad N.M. Kim H.C. Jo J.D. Choi K.H. Thin Solid Films 520 (2012) 5070.

  • [22] Bousoulas P. Michelakaki I. Tsoukalas D. J. Appl. Phys. 115 (2014) 034516.

  • [23] Singhal R. Agarwal D.C. Mishra Y.K. Singh F. Pivin J.C. Chandra R. Avasthi D.K. J. Phys. D. Appl. Phys. 42 (2009) 155103.

  • [24] Avasthi D. K. Mehta G. K. Swift Heavy Ions for Materials Engineering and Nanostructuring Springer Netherlands: Dordrecht 2011.

  • [25] Gupta A. Singhal R. Narayan J. Avasthi D.K. J. Mater. Res. 26 (2011) 2901.

  • [26] Singhal R. Pivin J.C. Chandra R. Avasthi D.K. Surf. Coatings Technol. 229 (2013) 50.

  • [27] Kim D.J. Kim D.S. Cho S. Kim S.W. Lee S.H. Kim J.C. Int. J. Thermophys. 25 (2004) 281.

  • [28] Zhang Y. Schwartzberg A. M. Xu K. Gu C. Zhang J. Z. Burda C. Ellingson R.J. Physical Chemistry of Interfaces and Nanomaterials IV 5929 (2005) 592912.

  • [29] Davis K.O. Jiang K. Habermann D. Schoenfeld W. V. IEEE J. Photovoltaics 5 (2015) 1265.

  • [30] http://www.lumerical.com/tcad-products/fdtd/.

  • [31] Hagemann H.J. Gudat W. Kunz C. J. Opt. Soc. Am. 65 (1975) 742.

  • [32] Link S.S. El-Sayed M.A. Int. Rev. Phys. Chem. 19 (2000) 409.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 78 78
PDF Downloads 78 78 78