Microstructure, transmittance and upconversion luminescence of Y2O3:Er3+ translucent ceramics

Yanyan Guo 1 , Xinghua Wu 2 , Qingkai Wang 2 ,  und Dianyuan Wang 2
  • 1 Faculty of Mechanical and Materials Engineering, Jiujiang University, Jiujiang, China
  • 2 College of Science, Jiujiang University, Jiujiang, China

Abstract

Y2O3:Er3+ translucent ceramics was fabricated with addition of La(OH)3 nanopowder as a sintering aid. The influence of La(OH)3 addition on the microstructure, transmittance and upconversion luminescence of Y2O3:Er3+ ceramics was investigated in detail. The results show that the ceramics sample with 5 mol % La(OH)3 additives exhibits finer microstructure with fewer pores and higher optical transmittance than others. It was proved that La(OH)3 additives could greatly reduce the porosity and improve the transparency of Y2O3:Er3+ ceramics. By using a 980 nm diode laser as a pumping source, the Y2O3:Er3+ ceramics gave bright visible upconversion luminescence, which was ascribed to the radiative transitions of 2H11/2,4S3/24I15/2 and 4F9/24I15/2 of Er3+ ions, respectively. The possible upconversion mechanism has been proposed accordingly.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • [1] Hoskins R.H., Soffer B.H., Appl. Phys. Lett., 4 (1964) 22.

  • [2] Alberto U., Camasciali M. M., J. Alloys Compd., 454 (2008) 374.

  • [3] Huang D.D., Yang Q.H., Wang Y.G., Zhang H.J., Adv. Mater. Res., 299–300 (2011) 641.

  • [4] Zhu J.F., Wang Z.H., Wang Q., Zhang Z.G., Yang Q.H., Yang J.H., Ma Y.F., Wei Z.Y., Chin. Opt. Lett., 10 (2012) 121403.

  • [5] Yang Q.H., Lu S.Z., Zhang B., Zhang H.J., Zhou J., Yuan Z.J., Qi Y.F., Lou Q.H., Opt. Mater., 33 (2011) 692.

  • [6] Zhang H.J., Yang Q.H., Lu S.Z., Huang D.D., Wang Y.G., Wei Z.Y., Wang Q., Zhang Y.D., Opt. Mater., 35 (2013) 766.

  • [7] Payne S.A., Chase L.L., Smith L.K., Kway W.L., KRUPKE W.F., IEEE J. Quant. Electron., 28 (2002) 2619.

  • [8] Schweitzer T., Jensen T., Heumann E., Huber G., Opt.Commun., 118 (1995) 557.

  • [9] Boulanger P.L., Doualan J.L., Girad S., Margerie J., Moncorge R., Phys. Rev. B, 60 (1999) 11380.

  • [10] Pollnau M., Gamelin D.R., Luthi S.R., Gudel H.U., Hehlen M.P., Phys. Rev. B, 61 (2001) 3337.

  • [11] Guan Y., Wei Z.H., Huang Y.L., Maalej R., Jinseo H., Ceram. Int., 39 (2013) 7023.

  • [12] Capobianco J.A., Boyer J.C., Vetrone F., Speghini A., Bettinelli M., Chem. Mater., 14 (2002) 2915.

  • [13] Park S., Yang W., Park C.Y., Noh M., Choi S., Park D., Jang H.S., Cho S., Mater. Res. Bull., 71 (2015) 25.

  • [14] Park S., J. Lumin., 166 (2015) 176.

  • [15] Yang R.Y., Qin G.S., Zhao D., Zheng K.Z., Qin W.P., J. Fluor. Chem., 140 (2012) 38.

  • [16] Wang J.L., Lin J.M., Wu J.H., Huang M.L., Lan Z., Chen Y., Tang S., Fan L.Q., Huang Y.F., Electrochim. Acta, 70 (2012) 131.

  • [17] Rakov N., Maciel G.S., Opt. Mater., 35 (2013) 2372.

  • [18] Ding M.Y., Lu C.H., Cao L.H., Ni Y.R., Xu Z.Z., Opt. Mater., 35 (2013) 1283.

  • [19] Martinez-Castro E., Garcia-Sevillano J., Cusso F., Ocana M., J. Alloys Compd., 619 (2015) 44.

  • [20] Grzyb T., Weclawiak M., Rozowska J., Lis S., J. Alloys Compd., 576 (2013) 345.

  • [21] Grzyb T., Weclawiak M., Pedzinski T., Lis S., Opt. Mater., 35 (2013) 2226.

  • [22] Guo Y.Y., Wang D.Y., Wu X.H., Wang Q.K., He Y., J. Alloys Compd., 688 (2016) 816.

  • [23] Li X.K., Mao X.J., Feng M.H., Qi S., Jiang B.X., Zhang L., J. Eur. Ceram. Soc., 36 (2016) 2549.

  • [24] Peelen J.G.J., Metselaa R., J. Appl. Phys., 45 (1974) 216.

  • [25] Ikesue A., Kamata K., Yamamoto T., Yamaga I., J. Am. Ceram. Soc., 80 (1997) 1517.

  • [26] Guo Y.Y., Wang D.Y., Wang F., Opt. Mater., 42 (2015) 390.

  • [27] Zhang J., Wang S.W., An L.Q., Liu M., Chen L.D., J. Lumin., 122-123 (2007) 8.

  • [28] Shen X., Nie Q.H., Xu T.F., Dai S.X., Wang X.S., Phys. B, 381 (2006) 219.

OPEN ACCESS

Zeitschrift + Hefte

Suche