Study of crystallographic, optical and sensing properties of Na2WO4 films deposited by thermal evaporation with several thickness

Open access

Abstract

Na2WO4 films have been grown at 400 °C using thermal evaporation technique. Their structural properties were characterized by XRD, while their chemical composition was verified by both EDX and X-ray photoelectron spectroscopy (XPS). The evolution of crystallinity was studied as a function of film thickness that ranged from 500 nm to 3000 nm. The grain size increased with increasing film thickness. The surface morphology of the prepared films was studied using scanning electron microscope (SEM) and atomic force microscopy (AFM). It has been observed that the average transmittance of samples in the visible and near infrared range has varied from 90 % to 78 % with the film thickness. The optical band gap of the Na2WO4 films varied from 3.8 eV to 4.1 eV. The crystalline size increased with increasing thickness and showed better sensing response to gases. Thus, this study confirmed the possibility of using Na2WO4 thick films as a sensor element for detection of ethanol (C2H5OH), acetone (C3H6O) methanol (CH3OH) and ammonia hydroxide (NH4OH) vapor at room temperature, where thicker films exhibited sensing properties with a maximum sensitivity at 25 °C in air, especially for NH4OH.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Santato C. Ulmann M. Augustynski J. J. Phys. Chem. B 5 (2001) 936.

  • [2] RS C. BW F. Phys. Rev. Lett 39 (1977) 232.

  • [3] Dickens P.G. Whittingham M.S. Q. Rev. Chem. Soc. 1 (1968) 30.

  • [4] Goodenough J.B. Prog. Solid. Sate Ch. 5 (1971) 145.

  • [5] Clarke R. Phys. Rev. Lett. 39 (1977) 1550.

  • [6] Abdallah B. Kakhia M. Shaker S.A. Comp. Interfaces 23 (2016) 663.

  • [7] Dakhel A.A. Mater. Res. Innov. 1 (2017) 55.

  • [8] Sun H.-T. Cantalini C. Lozzi L. Passacantando M. Santucci S. Pelino M. Thin Solid Films 1 (1996) 258.

  • [9] Clifford P.K. Tuma D.T. Sensor. Actuat. 3 (1982) 255.

  • [10] Yu-De W. Zhan-Xian C. Yan-Feng L. ZhenLai Z. Xing-Hui W. Solid. State. Electron. 5 (2001) 639.

  • [11] Ito K. Ohgami T. Nakazawa T. Sensor. Actuat. B Chem. 3 (1993) 161.

  • [12] Ando M. Suto S. Suzuki T. Tsuchida T. Nakayama C. Miura N. Yamazoe N. Chem. Lett. 2 (1994) 335.

  • [13] Chiu H.C. Tseung A.C.C. Electrode. Electrochem. Solid State Lett. 2(10) (1999) 540.

  • [14] Qu W. Wlodarski W. Sensor. Actuat. B Chem. 1 – 3 (2000) 4.

  • [15] Najdoski M.Z. Todorovski T. Mater. Chem. Phys. 2 – 3 (2007) 483.

  • [16] Ahmad M.Z. Kang J.H. Sadek A.Z. Moafi A. Sberveglieri G. Wlodarski W. Procedia Engineering 47 (2012) 358.

  • [17] Kanda K. Maekawa T. Sensor. Actuat. B Chem. 108 (2005) 97.

  • [18] Patil P.S. B. Mater. Sci. 4 (2000) 309.

  • [19] Mohammad AL A. Gillet M. Thin Solid Films 1 – 2 (2002) 302.

  • [20] Ponzoni A. Comini E. Ferroni M. Sberveglieri G. Thin Solid Films 1 (2005) 81.

  • [21] Patel K. Panchal C. Kheraj V. Desai M. Mater. Chem. Phys. 1 (2009) 475.

  • [22] Zhu Y.Q. Hu W. Hsu W.K. Terrones M. Grobert N. Hare J.P. Kroto H.W. Walton D.R.M. Terrones H. Chem. Phys. Lett. 5 – 6 (1999) 327.

  • [23] Mrada O. Ismaila I.M. Abdallahb B. Rihawya M.S. J. Optoelectron. Adv. Mat. 9 – 10 (2014) 1099

  • [24] Kishi K. Kirimura H. Fujimoto Y. Surf. Sci. 3 (1987) 586.

  • [25] Narasimham A.J. Green A. Matyi R.J. Khare P. Vo T. Diebold A. Labella V.P. AIP. Adv. 11 (2015) 117107.

  • [26] Kawasaki H. Matsunaga T. Guan W. Ohshima T. Yagyu Y. Suda Y. J. Plasma Fusion Res. 8 (2009) 1431.

  • [27] Bertus L.M. Faure C. Danine A. Labrugere C. Campet G. Rougier A. Duta A. Mater. Chem. Phys. 1 (2013) 49.

  • [28] Zhuiykov S. Hai Z. Xu H. Xue C. Int. J. Mater. Metall. Eng. 1 (2017) 46.

  • [29] Zhu C. Osherov A. Panzer M.J. Electrochim. Acta 30 (2013) 771.

  • [30] Regragui M. Addou M. Outzourhit A. Idrissi EL E. Kachouane A. Bougrine A. Sol. Energ. Mat. Sol. C. 4 (2003) 341.

  • [31] Al-Khawaja S. Abdallah B. Shaker S.A. Kakhia M. Comp. Interface. 3 (2015) 221.

  • [32] Abdallah B. Jazmatia A.K. Refaai R. Mat. Res. 3 (2017) 607.

  • [33] Prathap P. Revathi N. Subbaiah Y.P.V. Reddy K.T.R. Phys.-Condens. Mat. 3 (2008) 035205.

  • [34] Wang J. Gao L. J. Mater. Chem. 10 (2003) 2551.

  • [35] Rahmane S. Djouadi M.A. Aida M.S. Barreau N. Abdallah B. Zoubir H.N. Thin Solid Films 1 (2010) 5.

  • [36] Abdallah B. Jazmati A.K. Kakhia M. Optik 158 (2018) 1113.

  • [37] Rao K.S. Kanth B.R. Devi G.S. Mukhopadhyay P. J. Mater. Sci.-Mater. El 9 (2011) 1466.

  • [38] Abdallah B. Nasrallah F. Alnama K. Mod. Phy. Lett. B 04 (2019)

  • [39] Khadayate R.S. Waghulde R.B. Wankhede M.G. Sali J.V. Patil P.P. B. Mater. Sci. 2 (2007) 129.

  • [40] Li X. Chang Y. Long Y. Mater. Sci. Eng. C 4 (2012) 817.

  • [41] Lupan O. Ursaki V.V. Chai G. Chow L. Emelchenko G.A. Tiginyanu I.M. Gruzintsev A.N. Redkin A.N. Sensor. Actuat. B Chem. 1 (2010) 56.

  • [42] Wongchoosuk C. Choopun S. Tuantranont A. Kerdcharoen T. Mat. Res Innov. 13 (2009) 185.

  • [43] Dighavkar C. Arch. Appl. Sci. Res 6 (2013) 96.

  • [44] Lu J. G. Chang P. Fan Z. Mater. Sci. Eng. R Rep. 1 – 3 (2006) 49.

  • [45] Wang F. Fan J. Sun Q. Jiang Q. Chen S. Zhou W. J. Nanomater (2016) 1.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 6 6 6