Open Access

Structural characteristic of vanadium(V) oxide/sulfur composite cathode for magnesium battery applications

 and    | Dec 30, 2019

Cite

Magnesium batteries are regarded as promising candidates for energy storage devices owing to their high volumetric capacity. The practical application is hindered, however, by strong electrostatic interactions between Mg2+ and the host lattice and due to the formation of a passivation layer between anode and electrolyte. V2O5 is a typical intercalation compound with a layered crystal structure ((0 0 1) interlayer spacing ~ 11.53 Å), which can act as a good host for the reversible insertion and extraction of multivalent cations. Herein, we have presented an investigation of the effects of S injection on the structure, electrochemical performance and Mg2+ diffusion in V2O5 cathode materials for Mg-ion batteries. The V2O5/S composite structure was investigated using X-ray diffraction, field-emission scanning electron microscope and energy dispersive X-ray spectroscopy. The integrated electrode exhibits an improvement in the electrical and electrochemical properties compared to the V2O5 electrode. The as-prepared V2O5/S composite has an initial discharge capacity of 310 mAh g−1 compared to 160 mAh g−1 for the V2O5 electrode. The V2O5/S composite is a promising cathode material for magnesium-ion battery applications.

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties