Facile chemical strategy to synthesize Ag@polypyrrole microarrays and investigating its anisotropic effect on polymer conductivity

Open access

Abstract

A facile chemical approach was developed to fabricate microarrays (MAs) of Ag@polypyrrole nanocables (NCs). The strategy involved crosslinking the NCs by tetraethoxy silane (TEOS) under continuous pulse sonication without using a substrate. The material was characterized by scanning electron microscope (SEM) coupled with EDX, which revealed the longitudinal interconnections within the nanocables and creating unidirectional alignment in the form of MAs. FT-IR and Raman spectroscopy was employed to characterize the encapsulating polymer as polypyrrole (ppy) around Ag nanowires (NWs). The microarrays produced red shift in surface plasmon resonance (SPR) of Ag NWs, and drastically improved the thermal stability and conductivity of encasing ppy. It has imparted anisotropic conductivity effect on ppy which resulted in sharp decrease in resistivity from 8.35 × 1010 Ω to 2.449 Ω, when NCs were isolated and crosslinked into MAs form, respectively. The drastic decrease in resistivity of ppy was due to the anisotropic effect produced by the MAs format of NWs.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Huang Z. Shimizu T. Senz S. Zhang Z. Zhang X. Lee W. Geyer N. Gosele U. Nano Lett. 9(7) (2009) 2519.

  • [2] Li Y. Cu Y.T.H. Luo D. Nat. Biotechnol. 23 (2005) 885.

  • [3] Lin C. Liu Y. Yan H. Nano Lett. 7 (2007) 507.

  • [4] Lee H. J. Kim S.E. Kwon I.K. Park C. Kim C. Yang J. Lee S.C. Chem. Commun. 46 (2010) 377.

  • [5] Li Y. Du W. Sun G. Wooley K. L. Macromol. 41 (2008) 6605.

  • [6] Ammu S. Heskett D. World J. Condens. Mat. Phys. 3 (2013) 159.

  • [7] Wang X. Summers C. J. Wang Z. L. Nano Lett. 4(3) (2004) 423.

  • [8] Feng X. Shankar K. Varghese O.K. Paulose M.V. Latempa T.J. Grimes C.A. Nano Lett. 8(11) (2008) 3781.

  • [9] Gupta P. Rajput M. Singl N. Kumar V. Lahiri D. Polymer 89 (2016) 119.

  • [10] Yao B. Fleming D. Morris M.A. Lawrence S.E. Chem. Mater. 16 (2004) 4851.

  • [11] Son J.Y. Lim S.J. Cho J.H. Seong W.K. Kim H. Appl. Phy. Lett. 93 (5) (2008) 053109.

  • [12] Hill J.J. Haller K. Gelfand B. Ziegler K.J. ACS Appl. Mater. Interf. 2 (7) (2010) 1992.

  • [13] Jun T.X Chao W.Y Ning X.I. Li D.Z Steve T. Chinese Sci. Bull. 53 (22) (2008) 3590.

  • [14] Ahmad Z. Teng Q. Jiangru Z. Xiaoyu L. J. Mater. Sci. 44 (2009) 6054.

  • [15] Teng Q. Xie H. Zhang J. Ahmad Z. Li X. J. Nanopart. Res. 13(3) (2010) 1175.

  • [16] Carn F. Colin A. Achard M.-F. Deleuze H. Saadi Z. Backov R. Adv. Mater. 16 (2004) 140.

  • [17] Jung J.H. Park M. Shinkai S. Chem. Soc. Rev. 39 (2010) 4286.

  • [18] Ahmad Z. Choudhary M.A. Mirza M.A. Mirza J.A. Mater. Sci.-Poland 34 (1) (2016) 79.

  • [19] Sundaraganesan N. Kalaichelvan S. Meganathan C. Spectrochim. Acta Part A 71(2008) 898.

  • [20] Dominic J. B Cornard J. Sacchidanad S. S. Jayant A. K. Milind V. K. Int. J. Innov. Res. Sci. Eng. Technol. 3(6) (2014) 14021.

  • [21] Huth F. Govyadinov A. Amarie S. Nuansing W. Keilmann F. Hillenbr R. Nano Lett. 12 (2012) 3973.

  • [22] Wengand Z. Ni X. J. Appl. Polym. Sci. 110 (2008) 109.

  • [23] Wang Z. Liu J. Chen X. Wan J. Qian Y. Chem. Eur. J. 11 (2005) 160.

  • [24] Yaozu L. Chen Z. Xia W. Xin-Gui L. Samuel J.I. Kourosh K. Phys. Chem. C. 115 (2011) 16187.

  • [25] Yugang S. Byron G. Brian M. Younan X. Nano Lett. 2 (2002) 165.

  • [26] Ahmad Z. Choudhary M.A. Mehmood A. Wakeel R. Akhtar T. Rafiq M.A. Macromol. Res. 24 (2016) 596.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 24
PDF Downloads 21 21 21