Synthesis, morphology, electrical conductivity and electrochemical properties of α-Ni(OH)2 and its composites with carbon

Open access

Abstract

A simple and effective hydrothermal synthesis of spherical α-Ni(OH)2 particles and α-Ni(OH)2/carbon composites was proposed. The mechanism of ultrafine α-Ni(OH)2 phase forming and correlations between synthesis conditions, morphology, electrical conductivity were analyzed. It was found that carbon nanoparticles form an electric conductive cover on nickel hydroxide microparticles during synthesis which increases overall electronic conductivity of the composite material. α-Ni(OH)2 and α-Ni(OH)2/C samples were tested as electrodes for hybrid supercapacitors. It was found that carbon coverings stabilize α-Ni(OH)2 phase in the alkaline medium. The comparison of the influence of laser irradiation and ultrasonic treatment on the electrochemical performance of the obtained materials was made.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hemiy O.M. Yablon L.S. Budzulyak I.M. Budzulyak S.I. Morushko O.V. Kachmar A.I. J. Nano-Electron. Phys. 8 (2016) 04074.

  • [2] Zhong J.H. Wang A.L. Li G.R. Wang J.-W. Ou Y.-N. Tong Y.-X. J. Mater. Chem. 22 (2012) 5656.

  • [3] Park J.H. Kim S.W. Park O.O. Ko J.M. Appl. Phys. 82 (2006) 593.

  • [4] Shyyko L.O. Kotsyubynsky V.O. Budzulyak I.M. Sagan P. Nanoscale Res. Lett. 11 (2016) 243.

  • [5] McEwen R.S. J. Phys. Chem. 75 (1971) 1782.

  • [6] Budzulyak I.M. Ivanichok N.YA. Rachiy B.I. Vashchynsky V.M. Lisovskiy R.P. Phys. Chem. Solid State 16 (2015) 341.

  • [7] Duan G.T. Cai W.P. Luo Y.Y. Sun F.Q. Adv. Funct. Mater. 17 (2007) 644.

  • [8] Luo Y.Y. Li G.H. Duan G.T. Zhang L.D. Nanotechnology 17 (2006) 4278.

  • [9] Yang R. Gao J.L. Colloid Interface Sci. 297 (2006) 134.

  • [10] Liu L.J. Guan J.G. Shi W.D. Sun Z. Zhao J. J. Phys. Chem. 114 (2010) 13565.

  • [11] Deabate S. Henn F. Devautour S. Giuntini J.C. J. Electrochem. Soc. 150 (2003) 23.

  • [12] Ratner M. A. Johansson P. Shriver D. F. Mater. Res. Soc. Bull. 25(3) (2000) 31.

  • [13] Deabate S. Henn F. Devautour S. Giuntin J.C. J. Electrochem. Soc. 150(6) (2003) J23.

  • [14] Dyre J. C. J. Appl. Phys. 64(5) (1988) 2456.

  • [15] Shyyko L. Kotsyubynsky V. Budzulyak I. Rachiy B. Energetika 61 (3 – 4) (2015) 36.

  • [16] Lebovka M. Goncharuk A. Boyko Yu. Lisetskii L. Puchkovskaya G. Nanosystems Nanomaterials Nanotechnologies 7 (2009) 701.

  • [17] Oreshkin P.T. Physics of semiconductors and dielectrics Moscow 1977.

  • [18] Volkov A.A. Gorshunov B.P. Kozlov G.V. Proc. IOFAN 25 (1990) 112.

  • [19] Shornikova O.N. Maksimova N.V. Avdeev V.V. A manual for students in the specialty “Composite nanomaterials” Moscow 2010.

  • [20] Bode H. Dehmelt K. Witte J. Electrochim. Acta 11 (1966) 1079.

  • [21] Muralidharan V.S. Jayalakshmi N. Mageswari P. Bull. Electrochem. 7 (1991) 355.

  • [22] Kiani M.A. Mousavi M.F. Ghasemi S. J. Power Sources 195(17) (2010) 5794.

  • [23] Wang X.Y. Yan J. Yuan H.T. Zhang Y.-S. Song D.-Y. Int. J. Hydrogen Energy 24 (1991) 973.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 22 22 22
PDF Downloads 23 23 23