SiN/SiO2 passivation stack of n-type silicon surface

Open access

Abstract

The SiN/SiO2 stack is widely used to passivate the surface of n-type monocrystalline silicon solar cells. In this work, we have undertaken a study to compare the stack layer obtained with SiO2 grown by both rapid thermal and chemical ways to passivate n-type monocrystalline silicon surface. By varying the plateau time and the plateau temperature of the rapid thermal oxidation, we determined the parameters to grow 10 nm thick oxide. Two-step nitric acid oxidation was used to grow 2 nm thick silicon oxide. Silicon nitride films with three refractive indices were used to produce the SiN/SiO2 stack. Regarding this parameter, the minority carrier lifetime measured by means of QSSPC revealed that the refractive index of 1.9 ensured the best passivation quality of silicon wafer surface. We also found that stacks with nitric acid oxidation showed definitely the best passivation quality. In addition to produce the most efficient passivation, this technique has the lowest thermal budget.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Mayet A.S. Cansizoglu H. Gao Y. Ghandiparsi S. Kaya A. Bartolo-Perez C. Alhalaili B. Yamada T. Ponizovskaya Devine E. Elrefaie A. F. Wang S-Y. Saif Islam M. JOSA B 5 (2018) 1059.

  • [2] El Amrani A. Bekhtari A. El Kechai A. Menari H. Mahiou L. Maoudj M. SiKaddour R. Superlattices Microstruct. 73 (2014) 224.

  • [3] Balaji N. Lee S. Park C. Raja J. Nguyen H.T.T. Chatterjee Nikesh S.K. Jeyakumar R. Junsin Y. RSC Adv. 6 (2016) 70040.

  • [4] Gatz S. Plagwitz H. Altermatt P.P. Terheiden B. Brendel R. Proc. 23rd EUPVSEC Valencia Spain 2008 (2008) 1033.

  • [5] Kaminski P.M. Abbas A. Bass K. Claudio G. Energy Procedia 10 (2011) 71.

  • [6] Lebreton F. Silicon surface passivation properties of aluminum oxide grown by atomic layer deposition for low temperature solar cells processes Thesis Université Paris-Saclay 2017.

  • [7] Hameiri Z. Borojevic N. Mai L. Nandakumar N. Kim K. Winderbaum S. IEEE J Photovolt. 7 (4) (2017) 996.

  • [8] Cotter J. E. Guo J. H. Cousins P. J. Abbott M. D. Chen F. W. Fisher K. C. IEEE T. Electron. Dev. 53 (8) (2006) 1893.

  • [9] Kim K. Dhungel S. K. Yoo J. Jung S. Mangalaraj D. Yi J. J. Korean Phys. Soc. 51(5) (2007) 1659.

  • [10] Cuevas A. Kerr M. J. Schmidt J. Proc. 3rd World Conf. Photovolt. Energy Convers. (2003) 913.

  • [11] Kerr M. Cuevas A. Semicond. Sci. Technol. 17 (2) (2002) 166.

  • [12] Zhao J. Sol. Energ. Mater. Sol. C. 82 (53) (2004) 53.

  • [13] Ryu K. Kim S.-J. J. Korean Inst. Electr. Electron. Mater. Eng. 26 (1) (2013) 18.

  • [14] Kim W.B. Matsumoto T. Kobayashi H. J. Appl. Phys. 105 (2009) 103709-1.

  • [15] Imamura K. Takahashi M. A. Hirayama Y. Imai S. Kobayashi H. J. Appl. Phys. 107 (2010) 054503.

  • [16] Hu Y.-C. Chiu M.-H. Wang L. Tsai J.-L. Jpn. J. Appl. Phys. 49 (2) (2010) 022301-1.

  • [17] Larionova Y. Harder N.-P. Brendel R. Proc. 25th EUPVSEC/5th World Conf. Photovolt. Energy Convers. Valencia Spain 2010 (2010) 1143.

  • [18] Leguijt C. Lölgen P. Eikelboom J.A. Weeber A.W. Schuurmans F.M. Sinke W.C. Alkemade P.F.A. Sarro P.M. Marée C.H.M. Verhoef L.A. Sol. Energ. Mater. Sol. C. 40(4) (1995) 297.

  • [19] Chen Z. Pang S.K. Yasutake K. Rohatgi A. J. Appl. Phys. 74 (1993) 2856.

  • [20] Liu C.P. Chang M.W. Chuang C.L. Curr. Appl. Phys. 14 (2014) 653.

  • [21] Schmidt J. Kerr M. Cuevas A. Semicond. Sci. Technol. 16 (2001) 164.

  • [22] Massoud H.Z. Plummer J.D. Irene E.A. J. Electrochem. Soc. 132 (11) (1985) 2693.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 16
PDF Downloads 52 52 32