Synthesis of single-crystalline Pb(Zr0.52Ti0.48)O3 nanocrystals by hydrothermal method

Open access

Abstract

PbZr0.52Ti0.48O3 nanocrystals were synthesized by a hydrothermal method. The effect of NaOH concentration, reaction temperature and time on nucleation and growth of PbZr0.52Ti0.48O3 nanocrystals was investigated. As the 0.05 mol/L PbZr0.52Ti0.48O3 precursors were heated at 200 °C for 21 h with NaOH concentration of 0.5 mol/L, the tetragonal PbZr0.52Ti0.48O3 nanocrystals were formed, and the grain size was more than 20 nm. With increasing the NaOH concentration from 0.5 to 1.5 mol/L, the grain size of PbZr0.52Ti0.48O3 nanocrystals decreased. When the precursors were heated at different temperatures (140 °C to 200 °C) for 21 h with 1.0 mol/L NaOH, single-phase PbZr0.52Ti0.48O3 nanocrystals were obtained at 160 °C to 200 °C. With increasing the reaction temperature from 160 °C to 200 °C, the grains size of PbZr0.52Ti0.48O3 nanocrystals increased from 5 nm to 9 nm. When the precursors were heated at 160 °C in different reaction times from 6 h to 21 h, the evolution from amorphous to crystalline PbZr0.52Ti0.48O3 nanocrystals in correlation with the reaction time was observed. Single crystalline PbZr0.52Ti0.48O3 nanocrystals with narrow size distribution (from 5 nm to 9 nm) were synthesized by controlling the NaOH concentration, reaction temperature and time. The obtained results can find potential application in preparing PbZr0.52Ti0.48O3 thin films on flexible substrates.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Scott J. F. Paz de Araujo C. A. Science 246 (1989) 1400.

  • [2] Paz de Araujo C.A. Cuchiaro J.D. McMillan L.D. Scott M.C. Scott J.F. Nature 374 (1995) 627.

  • [3] Webber K.G. Voegler M. Khansur N.H. Kaeswurm B. Daniels J.E. Schader F.H. Smart Mater. Struct. 26 (2017) 063001.

  • [4] Park K. Son J.H. Hwang G.T. Jeong C.K. Ryu J. Koo M. Choi J. Lee S.H. Byun M. Wang Z.L. Lee K.J. Adv. Mater. 26 (2014) 2514.

  • [5] Nuffer J. Lupascu D.C. Rodel J. Acta. Mater. 48 (2000) 3783.

  • [6] Kanno I. Kotera H. Wasa K. Sens. Actuat. A 107 (2003) 68.

  • [7] Glass C. Ahmed W. van Ruitenbeek J. Mater. Lett. 125 (2014) 71.

  • [8] Komandin G.A. Porodinkov O.E. Spektor I.E. Volkov A.A. Vorotilov K.A. Seregin D.S. Sigov A.S. Phys. Solid State 60 (2018) 1226.

  • [9] Dufay T. Guiffard B. Seveno R. Tomas J. Energy Technol. 6 (2018) 917.

  • [10] Wan Q. Gu Q. Xing J. Chen J. Mater. Lett. 92 (2013) 52.

  • [11] Rath M. Varadarajan E. Natarajan V. Rao R. Ceram. Int. 44 (2018) 8749.

  • [12] Wang Z.D. Lai Z.Q. Hu Z.G. J. Alloy. Compd. 583 (2014) 452.

  • [13] Zhao J.S. Park D.Y. Seo M. J. Hwang C.S. Han Y.K. Yang C.H. Oh K.Y. J. Electrochem. Soc. 151 (2004) c283.

  • [14] Guo D. Mao W. Qin Y. Huang Z. Wang C. Shen Q. Zhang L. J. Mater. Sci.-Mater. El. 23 (2012) 940.

  • [15] Guo D. Mao W. Qin Y. Huang Z. Wang C. Shen Q. Zhang L. Bull. Mater. Sci. 35 (2012) 353.

  • [16] Fu C. Mao W. Qin Y. Huang Z. Guo D. J. Mater. Sci.-Mater. El. 22 (2011) 911.

  • [17] Guo D. Sato K. Hibino S. Takeuchi T. Bessho H. Kato K. J. Mater. Sci. 49 (2014) 4722.

  • [18] Zhang Z. Li X. Huang Z. Zhang L. Han J. Zhou X. Guo D. Ju Y. J. Mater. Sci.-Mater. El. 29 (2018) 7453.

  • [19] Dang F. Kato K. Imai H. Wada S. Haneda H. Kuwabara M. Cryst. Growth Des. 11 (2011) 4129.

  • [20] Li X. Huang Z. Zhang L. Guo D. Electron. Mater. Lett. 14 (2018) 610.

  • [21] Kutty T. Balachandran R. Mater. Res. Bull. 19 (1984) 1479.

  • [22] Deng Y. Liu L. Cheng Y. Nan C. Zhao S. Mater. Lett. 57 (2003) 1675.

  • [23] Huang H. Cao G. Z. Shen I. Y. Sens. Actuat. A 214 (2014) 111.

  • [24] Takada Y. Mimura K. Kato K. Jpn. J. Ceram. Soc. 126 (2018) 326.

  • [25] Meng Q. Zhu K. Pang X. Qiu J. Shao B. Ji H. Adv. Powder Technol. 24 (2013) 212.

  • [26] Li D. Nielsen M.H. Lee J. Frandsen C. Banfield J.F. de Yoreo J. Science 336 (2012) 1014.

  • [27] Liao H. Cui L. Whitelam S. Zheng H. Science 336 (2012) 1011.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 11
PDF Downloads 17 17 8