In this paper, employing of one-dimensional magnetophotonic crystals in infrared wavelengths range is considered. For this purpose, magnetophotonic multilayer structures, composed of magnetic defect layer surrounded by dielectric and MO Bragg mirrors, have been proposed. Ce:YIG with an optical thickness in the range of 0 to λs was used as a magnetic material. By using four by four transfer matrix method, the transmittance values and Faraday rotation (FR) angles of these structures were computed. The electric field distribution was obtained by Finite Element Method (FEM). By investigation of transmittance and FR angle of magnetophotonic crystals, it was possible to design the optimized structures with a rotation larger than 30 degrees and high transmittance. Such structures with a few micrometer thickness and fast magneto-optical (MO) responses have the potential to be used in MO devices like integrated photonic elements and sensors.
[1] Gaiyan B. Lijuan D. Shuai F. Zhifang F. Opt. Mater. 35 (2012) 252.
[2] Yablonovitch E. Phys. Rev. Lett. 58 (1987) 2059.
[3] John S. Phys. Rev. Lett. 58 (1987) 2486.
[4] Manzacca G. Paciotti D. Marchese A. Moreolo M.S. Cincotti G. Photonic. Nanostruct. 88 (2007) 1.
[5] Sugimoto Y. Tanaka Y. Ikeda N. Yang T. Nakamura H. Asakawa K. Inoue K. Maruyama T. Miyashita K. Ishida K. Watanabe Y. Appl. Phys. Lett. 83 (2003) 3236.
[6] Qiu M. Jaskorzynska B. Appl. Phys. Lett. 83 (2003) 1074.
[7] Inoue M. Arai K. Fujii T. Abe M. J. Appl. Phys. 85 (1999) 5768.
[8] Inoue M. Fujikawa R. Baryshev A. Khanikaev A. Lim P.B. Uchida H. Aktsipetrov O.A. Fedyanin A. Murzina T. Granovsky A. J. Phys. D. Appl. Phys. 39 (2006) 151.
[9] Murzina T.V. Kapra R.V. Dolgova T.V. Fedyanin A.A. Aktsipetrov O.A. Nishimura K. Uchida H. Inoue M. Phys. Rev. B. 70 (2004) 012407.
[10] Kato H. Matsushita T. Takayama A. Egawa M. Nishimura K. Inoue M. J. Appl. Phys. 93 (2003) 3906.
[11] Fedyanin A.A. Aktsipetrov O.A. Kobayashi D. Nishimura K. Uchida H. Inoue M. IEEE. T. Magn. 40 (2004) 2850.
[12] Shimizu H. Miyamura M. Tanaka M. Appl. Phys. Lett. 78 (2001) 1523.
[13] Kato H. Inoue M. J. Appl. Phys. 91 (2002) 7017.
[14] Kato H. Matsushita T. Takayama A. Egawa M. Nishimura K. Inoue M. IEEE T. Magn. 38 (2002) 3246.
[15] Kahl S. Grishin A.M. Phys. Rev. B 71 (2005) 205110.
[16] Goto T. Dorofeenko A.V. Merzlikin A.M. Baryshev A.V. Vinogradov A.P. Inoue M. Lisyansky A.A. Granovsky A.B. Phys. Rev. Lett. 101 (2008) 113902.
[17] Sakaguchi S. Sugimoto N. Opt. Commun. 162 (1999) 64.
[18] Sakaguchi S. Sugimoto N. IEEE J. Lightwave. Technol. 17 (1999) 1087.
[19] Kosobukin V.A. Solid State Commun. 139 (2006) 92.
[20] Inoue M. Fujii T. J. Appl. Phys. 81 (1997) 5659.
[21] Zvezdin A.K. Kotov V.A. Modern Magnetooptics and Magnetooptical Materials CRC Press Boca Raton 1997.
[22] Jalali T. Hessamodini M. Optik 126 (2015) 3954.
[23] Koerdt C. Magneto-Spatial Dispersion Phenomena: Photonic Band Gaps and Chirality in Magneto-Optics (Doctoral dissertation) University of Konstanz 2004. Retrieved from http://www.ub.uni-konstanz.de/kops/volltexte/2004/1376/pdf/thesis-kops.pdf&pli=1.
[24] Dyakov S.A. Tolmachev V.A. Astrova E.V. Tikhodeev S.G. Timoshenko V. Y. Perova T.S. (2010). Numerical methods for calculation of optical properties of layered structures International Conference on Micro- and Nano-Electronics Zvenigorod Russian Federation 2009 Russia: SPIE Digital Library.
[25] Bastos J.P.A. Sadowski N. Electromagnetic Modeling by Finite Element Methods Marcel Dekker Inc. New York. Basel 2003.
[26] Levy M. Yang H.C. Steel M.J. Fujita J. IEEE J. Lightwave. Technol. 19 (2001) 1964.