Synthesis and characterization of binary and ternary nanocomposites based on TiO2, SiO2 and ZnO with PVA based template-free gel combustion method

Open access

Abstract

Binary and ternary nanocomposites based on TiO2, SiO2 and ZnO were synthesized by PVA-based template-free gel combustion method. The morphology and the particles sizes of the synthesized samples depended on some parameters including the initial concentrations of metal salts and PVA amount in the sol, solvent composition and solution pH. Effects of these parameters were investigated and optimized by using the Taguchi method. In the experimental design, the Taguchi L25 array was used to investigate six factors at five levels. The samples were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) specific surface areas, scanning electron microscopy (SEM). The obtained results showed that the present method can be used to synthesize TiO2/SiO2/ZnO ternary nanocomposite with an effective surface area of 0.3 m2 · g−1 and ZnO/TiO2, TiO2/SiO2, ZnO/SiO2 binary nanocomposites with an effective surface area of 234 m2 · g−1, 6 m2 · g−1 and 0.5 m2 · g−1, respectively. The ZnO/TiO2 nanocomposite which was synthesized under the following experimental conditions: 2.5 wt.% Zn salt, 2.5 wt.% Ti salt, 2.0 wt.% PVA, pH = 1 and ethanol:water ratio 30:70 was selected by the Taguchi method as an optimum sample with the smallest particles (average diameter = 50 nm).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Wang L. Muhammed M. J. Mater. Chem. 9 (1999) 2871.

  • [2] Meulenkamp E.A. J. Phys. Chem. B 102 (1998) 5566.

  • [3] Song Z. Li Q. Gao L. J. Mater. Sci. Technol. 13 (1997) 321.

  • [4] Zhuang J. Liu M. Liu H. Sci. China B 52 (2009) 2125.

  • [5] Usui H. Mater. Lett. 63 (2009) 1489.

  • [6] Li F. Huang X. Jiang Y. Liu L. Li Z. Mater. Res. Bull. 44 (2009) 437.

  • [7] Kim S. Fisher B. Eisler H.J. Bawendi M. J. Am. Chem. Soc. 125 (2003) 11466.

  • [8] Tak Y. Hong S.J. Lee J.S. Yong K. J. Mater. Chem. 19 (2009) 5945.

  • [9] Kim C. Choi M. Jang J. Catal. Commun. 11 (2010) 378.

  • [10] Rahman I.A. Padvettan V. J. Nanomater. (2012) 1. DOI: 10.1155/2012/132424.

  • [11] Hoffmann M.R. Martin S.T. Choi W. Bahnemann D.W. Chem. Rev. 95 (1995) 69.

  • [12] Wang C. Ao Y. Wang P. Hou J. Qian J. Zhang S. J. Hazard. Mater. 178 (2010) 517.

  • [13] Wang C. Ao Y. Wang P. Hou J. Qian J. Mater. Lett. 64 (2010) 1003.

  • [14] Arai Y. Tanaka K. Khlaifat A.L. J. Mol. Catal. A: Chem. 243 (2006) 85.

  • [15] Biswas S. Hossain M.F. Takahashi T. Kubota Y. Fujishima A. Thin Solid Films 516 (2008) 7313.

  • [16] Houšková V. Štengl V. Bakardjieva S. Murafa N. J. Phys. Chem. Solids 69 (2008) 1623.

  • [17] Lee H.C. Hwang W.S. Appl. Surf. Sci. 253 (2006) 1889.

  • [18] Serpone N. Maruthamuthu P. Pichat P. Pelizzetti E. Hidaka H. J. Photochem. Photobiol. A: Chem. 85 (1995) 247.

  • [19] Liao D.L. Badour C.A. Liao B.Q. J. Photochem. Photobiol. A: Chem. 194 (2008) 11.

  • [20] Wang J. Jiang Z. Zhang L. Kang P. Xie Y. Lv Y. Zhang X. Ultrason. Sonochem. 16 (2009) 225.

  • [21] Xu X. Wang J. Tian J. Wang X. Dai J. Liu X. Ceram. Int. 37 (2011) 2201.

  • [22] Janitabar-Darzi S. Mahjoub A.R. J. Alloy. Compd. 486 (2009) 805.

  • [23] Giesche H. J. Eur. Ceram. Soc. 14 (1994) 205.

  • [24] Venkatathri N. Bull. Mater. Sci. 30 (2007) 615.

  • [25] Stöber W. Fink A. Bohn E. J. Colloid Interface Sci. 26 (1968) 62.

  • [26] Lindberg R. Sjöblom J. Sundholm G. Colloids Surf. A 99 (1995) 79.

  • [27] Chan Y. Zimmer J.P. Stroh M. Steckel J.S. Jain R.K. Bawendi M.G. Adv. Mater. 16 (2004) 2092.

  • [28] Epifani M. Giannini C. Tapfer L. Vasanelli L. J. Am. Ceram. Soc. 83 (2000) 2385.

  • [29] Gonella F. Mattei G. Mazzoldi P. Sada C. Battagli N.G. Cattaruzza E. Appl. Phys. Lett. 75 (1999) 55.

  • [30] Liz-Marzán L.M. Giersig M. Mulvaney P. Langmuir 12 (1996) 4329.

  • [31] He J. Ichinose I. Kunitake T. Nakao A. Langmuir 18 (2002) 10005.

  • [32] Song J.H Atay T. Shi S. Urabe H. V. Nurmikko A. Nano Lett. 15 (2005) 1557.

  • [33] Shter G.E. Behar-Levy H. Gelman V. Grader G.S. Avnir D. Adv. Funct. Mater. 17 (2007) 913.

  • [34] Traversa E. di Vona M.L. Licoccia S. Sacerdoti M. Carotta M.C. Crema L. Martinelli G. J. Sol-Gel Sci. Technol. 22 (2001) 167.

  • [35] Karami H. Amifar A. Tavallali H. Namdae Z.A. J. Clust. Sci. 21 (2011) 1.

  • [36] Sayilkan F. Asilturk M. Sener S. Erdemoglu S. Erdemoglu M. Sayilkan H. Turk. J. Chem. 31 (2007) 211.

  • [37] Calleja G. Serrano D.P. Sanz R. Pizarro P. Microporous Mesoporous Mater. 111 (2008) 429.

  • [38] Garzella C. Comini E. Bontempil E. Deperol L.E. Frigeri C. Sberveglieri G. Mater. Res. Soc. Symp. Proc. 638 (2001) 111.

  • [39] Wang Z. Helmersson U. Kall P. Thin Solid Films 405 (2002) 50.

  • [40] Ivanova T. Harizanova A. Surtchev M. Mater. Lett. 55 (2002) 327.

  • [41] Dohshi S. Takeuchi M. Anpo M. Catal. Today 85 (2003) 75.

  • [42] Gonçalves R.R. Messaddeq Y. Atik M. Ribeiro S.J. Mater. Res. 2 (1999) 11.

  • [43] Nishide T. Sato M. Hara H. J. Mater. Sci. 35 (2000) 465.

  • [44] Cabbrera S. El Haskouri J. Beltran-Porter A. Beltran-Porter D. Marcos M.D. Amoros P. J. Solid State Sci. 2 (2000) 513.

  • [45] Rostamkhani F. Karami H. Ghasemi A. Desalin. Water Treat. 60 (2017) 319.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 17
PDF Downloads 22 22 22