Deposition time and annealing effects on morphological and optical properties of ZnS thin films prepared by chemical bath deposition

Open access

Abstract

Nanocrystalline zinc sulfide thin films were prepared on glass substrates by chemical bath deposition method using aqueous solutions of zinc chloride, thiourea ammonium hydroxide along with non-toxic complexing agent trisodium citrate in alkaline medium at 80 °C. The effect of deposition time and annealing on the properties of ZnS thin films was investigated by X-ray diffraction, scanning electron microscopy, optical transmittance spectroscopy and four-point probe method. The X-ray diffraction analysis showed that the samples exhibited cubic sphalerite structure with preferential orientation along 〈2 0 0〉 direction. Scanning electron microscopy micrographs revealed uniform surface coverage, UV-Vis (300 nm to 800 nm) spectrophotometric measurements showed transparency of the films (transmittance ranging from 69 % to 81 %), with a direct allowed energy band gap in the range of 3.87 eV to 4.03 eV. After thermal annealing at 500 °C for 120 min, the transmittance increased up to 87 %. Moreover, the electrical conductivity of the deposited films increased with increasing of the deposition time from 0.35 × 10−4 Ω·cm−1 to 2.7 × 10−4 Ω·cm−1.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hassanien A.S. Akl A.A. Superlattice. Microstruct 89 (2016) 153.

  • [2] Huang Y.-H. Jie W.-Q. Zhou Y. Zha G.-Q. J. Alloy. Compd 549 (2013) 184.

  • [3] Díaz Reye S.J. Castilloojeda R.S. Sánchezes Píndol A. R. curr. Appl 15(2015) 103.

  • [4] Cha J.H. Kwon S.M. Bae J.A. Yang S.H. Jeon C.W. J. Alloy. Compd 708 (2017)562.

  • [5] Lei Y. Chen F.F. Li R. Xu J. Appl. Surf. Sci 308 (2014) 206.

  • [6] Piquette E.C. Bandic Z.Z. Mccaldin J.O. Mcgill T.C. J. Vac. Sci. Technol. B (1997).

  • [7] Kurbatov D. Kshnyakina S. Opanasyuk A. Melnik V. Nesprava V. Rom. J. Phys. 55 (2010) 213.

  • [8] Bosco J.P. Demers S.B. Kimball G.M. Lewis N.S. J. Appl. Phys 9 (2012).

  • [9] Wu X. Lai F. Lin L. Lvj. Zhuang B. Yan Q. Huang Z. Appl. Surf. Sci. 254 (2008) 6455.

  • [10] Xu G. Miao C. Liu G. Ye C. J. Mater. Chem.11 (2012) 4890.

  • [11] Liu T.Z. Ke H. Zhang H. Mater. Sci. Semicond. Proc. 26 ( 2014) 301.

  • [12] Khalifa Z.S. Mahmoud S.A. Physica E 60 (2017) 91.

  • [13] Bhalerao B.A. Lokhande D.C. Wagh G.B. Nanotechnol.6 (2013) 996.

  • [14] Kriisa M. Kiirber E. Krunks M. Thin Solid Films 87 (2014) 555.

  • [15] Haubi N.F. Midhjil K.A. Rashid H.G. Mansour H. Phys. Lett. 24 (2010).

  • [16] Sultana J. Paul S. Karmakar A. Yi R. Dalapati G.K. Chattopadhyay S. Appl. Surf. Sci. 418 (2017) 380.

  • [17] Liu J. Wei A. Zhao Y. J. Alloy.Compd. 588 (2014) 228.

  • [18] Hariskos D. Spiering S. Powalla M. Thin Solid Films 480(2005) 99.

  • [19] Wook S.S. Agawane G.L. Myeng G.G. Moholkar A.V. J. Alloy. Compd. (2012) 25.

  • [20] Shin S.W. Agawane G.L. Gangb M.G. Moholkarc A.V. Moon J.H. Kim J.H. Lee J.Y. J. Alloy. Compd. 526 (2012).

  • [21] Kassima. Nagalingam S. Arabian J. Chem. 249 (2010) 234.

  • [22] Dubrovin. I.V. Budennaya L.D. Mizetskaya I.B. SharkinaInorg. Mater. 19 (1983) 1603.

  • [23] Liang G. Fan P. Chenc. Luo J. Zhao J. Zhang D. Mater. Electron. 26 (2015) 2230.

  • [24] Ozkan M. Ekem N. Pat S. Balba M.Z. Mater. Sci. Semicond. Proc. 15 (2012) 113.

  • [25] Ladar M. Popovici E.j. Baldea I. Grecu R. J. Alloy. Compd. 434 (2007) 697.

  • [26] Nakada T. Furumi K. Kunioka A. IEEE Trans. Elec. Dev. 46 (1999) 2093.

  • [27] Kang S.R. Shin S.W. Choi D.S. Moholkar A.V. Moon J.H. Kim J.H. Curr. Appl. Phys 10 (2010) 437.

  • [28] Singh J. John. Wiley. Sons (2006).

  • [29] Nien Y.T. Chen I.G. J. Alloy. Compd. 471 (2009) 553.

  • [30] Obaid A.S. Mahdi M.A. Ahmed Dihe A. Hassan Z. Appl. Sci. Manag. 2012 (2012) 26.

  • [31] Lokhande C.D. Patil P.S. Tributsch H. Ennaoui A. Sol. Eng. Mat. Sol. C. 55 (1998) 379.

  • [32] Ke H. Duo S. Liu T. Sun Q. Ruan C. Fei X. Tanj Zhan S. Mater. Sci. Semicond. Proc. 18 (2014) 28.

  • [33] Fathy N. Kobayashi R. Ichimura M. Mater. Sci. Eng. B 107 (2004) 271.

  • [34] Offiah S.U. Ugwoke P.E. Ekwealor A.B. Ezugwu S.C. Osuji R.U. Ezema F.I. Digest. J. Nanomater. Biostruct. 7 (2012) 165.

  • [35] Brewe RS. H. Franzen S. J. Alloy. Compd. 338 (2002) 73.

  • [36] Arena O.L. Nair M.T.S. Nair P.K. Semicond. Sci. Technol. 12 (1997) 1323.

  • [37] Yang H. Zhao J. Song L. Mater. Lett 15 (2003) 2287.

  • [38] Kulkani D. Bull. Mater. Sci. 28 (2005) 43.

  • [39] Derbalia A. Saidia H. Attafa A. Benamraah. Bouhdjera A. Attafbn. Ezzaouiac H. J. Semicond 9 (2018) 45.

  • [40] Bendjedidi H. Attaf A. Saidi H. Aida M.s. Semmari S.bouhdjar A. Benkhetta Y. J. Semicond. 36 (2015) 12.

  • [41] Akl A.A. Mahmoud S.A. al-Shomar S.M. Hassanien A.S. Mater. Sci. Semicond. Proc. 74 (2018) 183.

  • [42] Hassanien A.S. Akl A.A. J. Alloy. Compd. 648 (2015) 280.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 43 43 14
PDF Downloads 40 40 21