Open Access

Structural optical and magnetic properties of transition metal doped ZnO magnetic nanoparticles synthesized by sol-gel auto-combustion method


Cite

Transition metals, such as chromium (Cr) and manganese (Mn) doped zinc oxide (ZnO) magnetic nanoparticles, were synthesized via sole gel auto-combustion method. The prepared magnetic (Zn1−(x+y)MnxCryO, where x, y = 0, 0.02, 0.075) nanoparticles were calcined in an oven at 6000 °C for 2 hours. The morphologies of the nanoparticles were investigated using different techniques. X-ray diffraction (XRD) analysis revealed that the hexagonal wurtzite structure of the synthesized nanoparticles was unaffected by doping concentration. The crystallite size measured by Scherrer formula was in the range of 32 nm to 38 nm at different doping concentrations. Nanosized particles with well-defined boundaries were observed using a field emission scanning electron microscopy (FE-SEM). Fourier transform infrared (FT-IR) spectra showed a wide absorption band around 1589 cm−1 in all the samples, corresponding to the stretching vibration of zinc and oxygen Zn–O bond. A blue shift in optical band gaps from 3.20 eV for ZnO to 3.08 eV for Zn0.85Mn0.075Cr0.075O nanoparticles was observed in diffuse reflectance spectra, which was attributed to the sp-d exchange interactions. The field-dependent magnetization M-H loops were measured using vibrating sample magnetometer (VSM). The VSM results revealed diamagnetic behavior of the ZnO nanoparticles which changed into ferromagnetic, depending on the doping concentration and particle size. The compositions of Zn, Cr, Mn and O in the prepared samples were confirmed by using the energy dispersive X-ray spectroscopy (EDX). Our results provided an interesting route to improve magnetic properties of ZnO nanoparticles, which may get significant attention for the fabrication of magnetic semiconductors.

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties