Structural optical and magnetic properties of transition metal doped ZnO magnetic nanoparticles synthesized by sol-gel auto-combustion method

Open access

Abstract

Transition metals, such as chromium (Cr) and manganese (Mn) doped zinc oxide (ZnO) magnetic nanoparticles, were synthesized via sole gel auto-combustion method. The prepared magnetic (Zn1−(x+y)MnxCryO, where x, y = 0, 0.02, 0.075) nanoparticles were calcined in an oven at 6000 °C for 2 hours. The morphologies of the nanoparticles were investigated using different techniques. X-ray diffraction (XRD) analysis revealed that the hexagonal wurtzite structure of the synthesized nanoparticles was unaffected by doping concentration. The crystallite size measured by Scherrer formula was in the range of 32 nm to 38 nm at different doping concentrations. Nanosized particles with well-defined boundaries were observed using a field emission scanning electron microscopy (FE-SEM). Fourier transform infrared (FT-IR) spectra showed a wide absorption band around 1589 cm−1 in all the samples, corresponding to the stretching vibration of zinc and oxygen Zn–O bond. A blue shift in optical band gaps from 3.20 eV for ZnO to 3.08 eV for Zn0.85Mn0.075Cr0.075O nanoparticles was observed in diffuse reflectance spectra, which was attributed to the sp-d exchange interactions. The field-dependent magnetization M-H loops were measured using vibrating sample magnetometer (VSM). The VSM results revealed diamagnetic behavior of the ZnO nanoparticles which changed into ferromagnetic, depending on the doping concentration and particle size. The compositions of Zn, Cr, Mn and O in the prepared samples were confirmed by using the energy dispersive X-ray spectroscopy (EDX). Our results provided an interesting route to improve magnetic properties of ZnO nanoparticles, which may get significant attention for the fabrication of magnetic semiconductors.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J. Lim H. Kang C.K. Kim K.K. Park L.K. Hwang D.K. Park S.J. Adv. Mater. 18 (2006) 2720.

  • [2] J. Furdyna K. J. Appl. Phys. 64 (1988) 29.

  • [3] Elilarassi R. Chandrasekaran G. Mater. Electron. 24 (2013) 96.

  • [4] Zhang J. Zhang L. Peng X. Wang X. Appl. Phys 73 (2001) 773.

  • [5] Pan S.L. Zeng D.D. Zhang H.L. Li H.L. Appl. Phys. A 70 (2000) 637.

  • [6] Chand P. Gaur A. Kumar A. Int. J. Chem. Nuc. Mat. Metall. Eng. 8 (2014) 12.

  • [7] Chen W. Lu Y.H. Wang M. Kroner L. Fecht H.J. J. Phys. Chem. C 113 (2009) 1320.

  • [8] Wang P.Y. Gao Q.H. Xu J.Q. Fine Chem. 24 (2007) 436.

  • [9] Li D. Huang J.F. Cao L.Y. Jia Y.L. Yang H.B. Yao C.Y. Ceram. Int. 40 (2014) 2647.

  • [10] Yue H.Y. Fei W.D. Li Z.J. Wang L.D. J. Sol-Gel Sci. Technol. 44 (2007) 259.

  • [11] Yang Q. Hu W. Ceram. Int. 36 (2010) 989.

  • [12] Yousefi R. Kamaluddin B. Solid State Sci. 12 (2010) 252.

  • [13] Tonto P. Mekasu O. Phatanasri S. Pavarajarn V. Praserthdam P. Ceram. Int. 34 (2008) 57.

  • [14] Wang J. Shi N. Qi Y. Liu M. J. Sol-Gel Sci. Technol. 53 (2009) 101.

  • [15] Li H. Zhang Z. Huang J. Liu R. Wang Q. J. Alloy. Compd. 550 (2013) 526.

  • [16] Rajendar V. Dayakar T. Chakra C.H. Shilpa R. Venkateswara S.K. Appl. Nanomed. Nanobio. 2 (2015) 21.

  • [17] Meng A. Xing J. Li Z. Li Q. ACS Appl. Mater. Interface. 7 (2015) 27449.

  • [18] Moontragoon P. Pinitsoontorn S. Thongbai P. Microelectron. Eng. 108 (2013) 158.

  • [19] Zhong M. Li Y. Hu Y. Zhu M. Li W. Jin H. Zhao H. J. Alloy. Compd. 647 (2015) 823.

  • [20] Ahmed N. Majid A. Khan M.A. Rashid M. Umar Z.A. Baig M.A. Mater. Sci.-Poland 36 (2018) 3.

  • [21] Cullity B.D. Elements of X-ray diffraction Addison- Wesley 2nd edition 1978.

  • [22] Umar Z.A. Ahmed N. Ahmed R. Arshad Anwar-Ul-Haq M. Hussain M. Baig M.A. Surf. Interface. Anal. 50 (2018) 1.

  • [23] Kumar H. Rani R. Int. Let. Chem. Phys. Ast. 14 (2013) 26.

  • [24] Ryu S.R. Jang W. Yu S.I. Lee B.H. Kwon S. Shin K. Sci. Res. 6 (2016) 181.

  • [25] Lammertink R.H. Hempenius M.A. Vancso G.J. Shin K. Rafailovich M.H. Sokolov J. Macromolecules 34 (2001) 942.

  • [26] Saleh R. Purbo S. Prakoso A. J. Magn. Magn. Mater. 324 (2012) 665.

  • [27] Karunakaran C. Vinayagamoorthy P. Jayabharathi Electrical J. Mater. Res. Express 1 (2014) 045019.

  • [28] Mary J.A. Vijaya J.J. Int. J. ChemTech Res. 7 (2015) 1351.

  • [29] Park T.J. Papaefthymiou G.C. Viescas A.J. A Moodenbaugh. R. Wong S.S. Nano. Let. 7 (2007) 766.

  • [30] Zeyada H.M. Youssif M.I. Ghamaz N.A. Aboderbala E.O. Physica B 506 (2017) 75.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 140 33
PDF Downloads 149 149 73