Selective crystallization of gamma glycine for NLO applications using magnesium sulfate (MgSO4) as an additive

Open access

Abstract

Crystallization of γ-glycine in the presence of selected concentration (9 g/mL) of tailor-made additive magnesium sulfate heptahydrate salt (MgSO4·7H2O) has been studied at ambient temperature by adopting slow solvent evaporation procedure. The morphological modifications of glycine crystals grown from pure aqueous solutions of glycine and from glycine solutions containing magnesium species in the amount of 0.1 g/mL to 16 g/mL have been investigated thoroughly. The crystalline nature and phase identification of the crystalline material were confirmed by X-ray powder diffraction and SXRD studies. NMR studies revealed the information about the molecular conformation in solution, phase changes, functional groups and chemical environment. FT-IR spectra revealed distinct difference between α and γ-glycine polymorphs in the region around 880 cm−1 to 930 cm−1. The grown γ-glycine crystal had a lower cut-off value at 200 nm and the bandgap value evaluated from the Tauc plot was found to be 5.83 eV. The marked differences between α and γ-polymorphs of glycine were also revealed by DSC thermograms. The mechanical strength of the γ-glycine crystal was studied with the help of Vickers microhardness instrument. Kurtz-powder NLO study proved the generation of second harmonics (i.e. green light emission) in the grown γ-glycine crystal and its efficiency was calculated as 1.44 times better than that of the reference material potassium dihydrogen phosphate.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Cabrera N. Vermilyea D.A. The Growth of Crystal from Solution. in:Doremus R.H. Roberts D.B.W. Turnbull (Eds.) Growth and Perfection of Crystal Chapman & Hall London 1958.

  • [2] Litaka Y. Acta Crystallogr. 14 (1961) 1.

  • [3] Litaka Y. Acta Crystallogr. 11 (1958) 225.

  • [4] Litaka Y. Proc. Jpn. Acad. 30 (1954) 109.

  • [5] Litaka Y. Acta Crystallogr. 13 (1960) 35.

  • [6] Sendhil. K. Poornachary. Pui Shan Chow. Reginald B.H.Tan. J. Cryst. Growth 310 (2008) 3034.

  • [7] Sendhil. K. Poornachary. Pui Shan Chow. Reginald B.H.Tan. Cryst. Growth Des. 8 (2008) 179.

  • [8] Dawson A. Allan D.R. Belmonte S.A. Clark S.J. David W.I.F. MC Gregor P.A. Parsons S. Pulham C.R. Sawyer L. Cryst. Growth Des. 5 (2005) 1415.

  • [9] Marsh R.E. Acta Crystallogr. 11 (1958) 654.

  • [10] Boldyreva E.V. Crys. Eng. 6 (2003) 235.

  • [11] Narayan Bhat M. Dharmaprakash S.M. J. Cryst. Growth (2002) 242.

  • [12] Narayana Moolya B. Jayarama A. Sureshkumar M.R. Dharmaprakash S.M. J.Cryst.Growth 280 (2005) 581.

  • [13] Dillip G.R. Raghavaiah P. Mallikarjuna K. Madhukar Reddy C. Bhagavannarayana G. Ramesh Kumar V. Deva Prasad Raju B. Spectrochim. Acta Part A 79 (2011) 1123.

  • [14] Zulifiqar Ali Ahamed S.D. Dillip G.R. Raghavaiah P. Mallikarjuna K. Deva Prasad Raju B. Arab. J. Chem. 6 (2013) 429.

  • [15] Dillip G.R. Bhagavannarayana G. Raghavaiah P. Deva Prasad Raju B. Mater. Chem. Phys. 134 (2012) 371.

  • [16] Parimaladevi R. Sekar C. Spectrochim. Acta Part A 76 (2010) 490.

  • [17] Anbuchudar Azhagan S. Ganesan S. Optik 11 (2012) 993.

  • [18] Anbuchudar Azhagan S. Ganesan S. Optik 6 (2013) 526.

  • [19] Anbuchudar Azhagan S. Ganesan S. Optik 15 (2013) 2251.

  • [20] Anbu Chudar Azhagan S. Ganesan S. Optik 20 (2013) 4452.

  • [21] Anbu Chudar Azhagan S. Ganesan S. Optik 23 (2013) 6456

  • [22] Anbuchudar Azhagan S. Ganesan S. IJPS 8 (2013) 6.

  • [23] Anbu Chudar Azhagan S. Ganesan S. Arab. J. Chem. 10 (2017) S2615.

  • [24] Srinivasan K. Renuga Devi K. Anbuchudar Azhagan S. Cryst. Res. Technol. 46 (2011) 159.

  • [25] Srinivasan K. J. Cryst. Growth 311 (2008) 156.

  • [26] Srinivasan K. Arumugam J. Opt. Mater. 30 (2007) 40

  • [27] Renuga Devi K. Srinivasan K. Cryst. Res. Technol. 50 (2015) 389.

  • [28] Balakrishnan T. Ramesh Babu R. Ramamurthi K. Spectrochim. Acta Part A 69 (2008) 1114.

  • [29] Anbuchezhiyan M. Ponnusamy S. Singh S. P. Pal P.K. Datta P.K. Muthamizhchelvan C. Cryst. Res. Technol. 45 (2010) 497.

  • [30] Yogambal C. Ezhil Vizhi R. Rajan Babu D. Cryst. Res. Technol. 50 (2015) 22.

  • [31] Sekar C. Parimaladevi R. Spectrochim. Acta Part A 74 (2009) 1160.

  • [32] Organic Index to the Powder Diffraction File Joint committee of Powder Diffraction Standards 2002.

  • [33] Guangwen HE. Venkateswarlu Bhamidi. Scott. R. Wilson. Reginald B.H.Tan. Paul J.A. Kenis. Charles F. Zukoski. Cryst. Growth Des. 6 (2006) 1746.

  • [34] Towler C.S. Davey R.J. Lancaster R.W. Price C.J. J. Am. Chem. Soc. 126 (2004) 13347.

  • [35] Li L. Lechuga-Ballesteros D. Szkudlarek B.A. Nair Rodriguez-Hornedo N. J. Colloid. Interf. Sci. 168 (1994) 8.

  • [36] Perlovich G.L. Hansen L.K. Bauer-Brandl A. J. Therm. Anal. Calorim. 66 (2001) 699.

  • [37] Silverstein R. Bassler G.C. Morrill T.C. Spectrometric Identification of Organic compounds John Wiley & Sons New York 1981.

  • [38] Bruice P.Y. Organic chemistry Pearson Education Pvt. Ltd. New Delhi 2002.

  • [39] Onitsch E.M. Mikroskopie 95 (1956) 2.

  • [40] Kurtz S.K. Perry T.T. J. Appl. Phys. 39 (1968) 3798.

  • [41] Ezhil Vizhi R. Yogambal C. J. Cryst. Growth 452 (2016) 198.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 64 64 18
PDF Downloads 38 38 11