Dynamic magnetoelastic properties of TbxHo0.9−xNd0.1(Fe0.8Co0.2)1.93/epoxy composites

W.C. Shen 1 , L.L. Lin 1 , C.Y. Shen 1 , S. Xing 1 , and Z.B. Pan 1
  • 1 Faculty of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China

Abstract

TbxHo0.9−xNd0.1(Fe0.8Co0.2)1.93/epoxy (0 ⩽ x ⩽ 0.40) composites are fabricated in the presence of a magnetic field. The structural and dynamic magnetoelastic properties are investigated as a function of both magnetic bias field Hbias and frequency f at room temperature. The composites are formed as textured orientation structure of 1–3 type with 〈1 0 0〉 preferred orientation for x ⩽ 0.10 and 〈1 1 1〉-orientation for x ⩾ 0.25. The composites generally possess insignificant eddy-current losses for frequency up to 50 kHz, and their dynamic magnetoelastic properties depend greatly on Hbias. The elastic modulus (E3H and E3B) shows a maximum negative ΔE effect, along with a maximum d33, at a relatively low Hbias ~ 80 kA/m, contributed by the maximum motion of non-180° domain-wall. The 1–3 type composite for x ⩾ 0.25 shows an enhanced magnetoelastic effect in comparison with 0 to 3 type one, which can be principally ascribed to its easy magnetization direction (EMD) towards 〈1 1 1〉 axis and the formation of 〈1 1 1〉-texture-oriented structure in the composite. These attractive dynamic magnetoelastic properties, e.g., the low magnetic anisotropy and d33,max as high as 2.0 nm/A at a low Hbias ~ 80 kA/m, along with the light rare-earth Nd element existing in insulating polymer matrix, would make it a promising magnetostrictive material system.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Clark A.E., Magnetostrictive Rare Earth-Fe2 Compounds, in: Wohlfarth E.P. (Ed.), Ferromagnetic Materials, North-Holland, Amsterdam, 1980, Vol. 1, p. 531.

  • [2] Engdahl G., Handbook of Giant Magnetostrictive Materials, Academic Press, San Diego, 2000.

  • [3] Elhajjar R., Law C.T., Pegoretti A., Prog. Mater. Sci., 97 (2018), 204.

  • [4] Sandlund L., Fahlander M., Cedell T., Clark A.E., Restorff J.B., J. Appl. Phys., 75 (1994), 5656.

  • [5] Altin G., Ho K.K., Henry C.P., Carman G.P., J. Appl. Phys., 101 (2007), 033537.

  • [6] Meng H., Zhang T.L., Jiang C.B., Xu H.B., Appl. Phys. Lett., 96 (2010), 102501.

  • [7] Dong X., Qi M., Guan X., Ou J., Polym. Test., 29 (2010), 369.

  • [8] Yin H.Y., Liu J.J., Rare Met. Mater. Eng., 43 (2014), 1275.

  • [9] Rajasekhar P., Markandeyulu G., J. Magn. Magn. Mater., 448 (2018), 82.

  • [10] Tang Y.M., He Y., Huang Y., Zhang L., Tang S.L., Du Y.W., J. Magn. Magn. Mater., 451 (2018), 515.

  • [11] Song X.H., Liu J.J., Wei S.H., Zhu X.Y., Li F., Zhang Z.R., Si P.Z., Ren W.J., Appl. Phys. A., 122 (2016), 564.

  • [12] Pan Z.B., Liu J.J., Du J., Ren W.J., Solid State Commun., 211 (2015) 34.

  • [13] Zhang Z.R., Liu J.J., Song X.H., Li F., Zhu X.Y., Si P.Z., Mater. Sci.-Poland., 35 (2017), 81.

  • [14] Pan Z.B., Liu J.J., Liu X.Y., Wang R., Wang J., Si P.Z., Int. J. Mod. Phy. B., 28 (2014), 1450159.

  • [15] Liu J.J., Pan Z.B., Si P.Z., Du J., Appl. Phys. Lett., 103 (2013), 042406.

  • [16] Hudson J., Busbridge S.C., Piercy A.R., Sensors Act., 81 (2000), 294.

  • [17] Or S.W., Nersessian N., Carman G.P., IEEE Trans. Magn., 40 (2004), 71.

  • [18] Lv X.K., Or S.W., Liu W., Liu X.H., Zhang Z.D., J. Alloy. Comp., 476 (2009), 271.

  • [19] Or S.W., Nersessian N., McKnight G.P., Carman G.P., J. Appl. Phys., 93 (2003), 8510.

  • [20] Wang B.W., Busbridge S.C., Guo Z.J., Zhang Z.D., J. Appl. Phys., 93 (2003), 8489.

  • [21] Hudson J., Busbridge S.C., Piercy A.R., Ferroelectrics, 228 (1999), 283.

  • [22] Ren W.J., Or S.W., Chan H.L.W., Zhang Z.D., J. Magn. Magn. Mater., 293 (2005), 908.

  • [23] Clark A.E., Restorff J.B., Wun-Fogle M., Lindberg J. F., J. Appl. Phys., 73 (1993), 6150.

  • [24] Kendall D., Piercy A.R., IEEE Trans. Magn., 26 (1990), 1837.

OPEN ACCESS

Journal + Issues

Search