Dynamic magnetoelastic properties of TbxHo0.9−xNd0.1(Fe0.8Co0.2)1.93/epoxy composites

Open access

Abstract

TbxHo0.9−xNd0.1(Fe0.8Co0.2)1.93/epoxy (0 ⩽ x ⩽ 0.40) composites are fabricated in the presence of a magnetic field. The structural and dynamic magnetoelastic properties are investigated as a function of both magnetic bias field Hbias and frequency f at room temperature. The composites are formed as textured orientation structure of 1–3 type with 〈1 0 0〉 preferred orientation for x ⩽ 0.10 and 〈1 1 1〉-orientation for x ⩾ 0.25. The composites generally possess insignificant eddy-current losses for frequency up to 50 kHz, and their dynamic magnetoelastic properties depend greatly on Hbias. The elastic modulus (E3H and E3B) shows a maximum negative ΔE effect, along with a maximum d33, at a relatively low Hbias ~ 80 kA/m, contributed by the maximum motion of non-180° domain-wall. The 1–3 type composite for x ⩾ 0.25 shows an enhanced magnetoelastic effect in comparison with 0 to 3 type one, which can be principally ascribed to its easy magnetization direction (EMD) towards 〈1 1 1〉 axis and the formation of 〈1 1 1〉-texture-oriented structure in the composite. These attractive dynamic magnetoelastic properties, e.g., the low magnetic anisotropy and d33,max as high as 2.0 nm/A at a low Hbias ~ 80 kA/m, along with the light rare-earth Nd element existing in insulating polymer matrix, would make it a promising magnetostrictive material system.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Clark A.E. Magnetostrictive Rare Earth-Fe2 Compounds in: Wohlfarth E.P. (Ed.) Ferromagnetic Materials North-Holland Amsterdam 1980 Vol. 1 p. 531.

  • [2] Engdahl G. Handbook of Giant Magnetostrictive Materials Academic Press San Diego 2000.

  • [3] Elhajjar R. Law C.T. Pegoretti A. Prog. Mater. Sci. 97 (2018) 204.

  • [4] Sandlund L. Fahlander M. Cedell T. Clark A.E. Restorff J.B. J. Appl. Phys. 75 (1994) 5656.

  • [5] Altin G. Ho K.K. Henry C.P. Carman G.P. J. Appl. Phys. 101 (2007) 033537.

  • [6] Meng H. Zhang T.L. Jiang C.B. Xu H.B. Appl. Phys. Lett. 96 (2010) 102501.

  • [7] Dong X. Qi M. Guan X. Ou J. Polym. Test. 29 (2010) 369.

  • [8] Yin H.Y. Liu J.J. Rare Met. Mater. Eng. 43 (2014) 1275.

  • [9] Rajasekhar P. Markandeyulu G. J. Magn. Magn. Mater. 448 (2018) 82.

  • [10] Tang Y.M. He Y. Huang Y. Zhang L. Tang S.L. Du Y.W. J. Magn. Magn. Mater. 451 (2018) 515.

  • [11] Song X.H. Liu J.J. Wei S.H. Zhu X.Y. Li F. Zhang Z.R. Si P.Z. Ren W.J. Appl. Phys. A. 122 (2016) 564.

  • [12] Pan Z.B. Liu J.J. Du J. Ren W.J. Solid State Commun. 211 (2015) 34.

  • [13] Zhang Z.R. Liu J.J. Song X.H. Li F. Zhu X.Y. Si P.Z. Mater. Sci.-Poland. 35 (2017) 81.

  • [14] Pan Z.B. Liu J.J. Liu X.Y. Wang R. Wang J. Si P.Z. Int. J. Mod. Phy. B. 28 (2014) 1450159.

  • [15] Liu J.J. Pan Z.B. Si P.Z. Du J. Appl. Phys. Lett. 103 (2013) 042406.

  • [16] Hudson J. Busbridge S.C. Piercy A.R. Sensors Act. 81 (2000) 294.

  • [17] Or S.W. Nersessian N. Carman G.P. IEEE Trans. Magn. 40 (2004) 71.

  • [18] Lv X.K. Or S.W. Liu W. Liu X.H. Zhang Z.D. J. Alloy. Comp. 476 (2009) 271.

  • [19] Or S.W. Nersessian N. McKnight G.P. Carman G.P. J. Appl. Phys. 93 (2003) 8510.

  • [20] Wang B.W. Busbridge S.C. Guo Z.J. Zhang Z.D. J. Appl. Phys. 93 (2003) 8489.

  • [21] Hudson J. Busbridge S.C. Piercy A.R. Ferroelectrics 228 (1999) 283.

  • [22] Ren W.J. Or S.W. Chan H.L.W. Zhang Z.D. J. Magn. Magn. Mater. 293 (2005) 908.

  • [23] Clark A.E. Restorff J.B. Wun-Fogle M. Lindberg J. F. J. Appl. Phys. 73 (1993) 6150.

  • [24] Kendall D. Piercy A.R. IEEE Trans. Magn. 26 (1990) 1837.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 6
PDF Downloads 33 33 3