Structural and thermal properties of Zn-containing magnesium aluminate spinels obtained by wet chemical method

Open access

Abstract

In the present study, the dopant effect of Zn on the crystal structure, thermal properties and morphology of magnesium aluminate (MgAl2O4) spinel (MAS) structure was investigated. A pure and two Zn-containing MASs (e.g. MgAl1.93Zn0.07O4 and MgAl1.86Zn0.14O4) were synthesized for this purpose via a wet chemical method, and the as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, differential thermal analysis (DTA), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy techniques. It was found that the crystal structure, thermal properties and morphology of the MAS system change with the increase in the amount of Zn. MgO phase formation was observed. The values of the lattice parameter, unit cell volume and crystallite size increased, and the crystallinity percentage decreased. The morphology was also affected by adding of Zn.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Liu M. Rong Z. Malik R. Canepa P. Jain A. Ceder G. Persson K.A. Energy Environ. Sci. 8 (2015) 964.

  • [2] Li N. Duan X. Yu F. Jiang H. Vacuum 142 (2017) 1.

  • [3] Ganesh I. Int. Mater. Rev. 58 (2013) 63.

  • [4] Sinhamahapatra S. Shamim M. Tripathi H.S. Ghosh A. Dana K. Ceram. Int. 42 (2016) 9204.

  • [5] Sarkar R. Sahoo S. Ceram. Int. 40 (2014) 719.

  • [6] Nakhowong R. Kiennork S. Wongwanwattana P. Seetawan T. Chueachot R. Mater. Lett. 220 (2018) 234.

  • [7] Mohan S.K. Sarkar R. Mater. Design 110 (2016) 145.

  • [8] Tang C. Zhai Z. Li X. Sun L. Bai W. J. Taiwan Inst. Chem. E. 58 (2016) 97.

  • [9] Orosco P. Barbosa L. Ruiz M.D.C. Mater. Res. Bull. 59 (2014) 337.

  • [10] Liu J. Wang Z. Wang X. Liu H. Ma Y. Ceram. Int. 44 (2018) 7416.

  • [11] Cui F.Y. Kundu A. Krause A Harmer M.P. Vinci R.P. Acta Mater. 148 (2018) 320.

  • [12] Habibi N. Wang Y. Arandiyan H. Rezaei M. Adv. Powd. Technol. 28 (2017) 1249.

  • [13] Gritsyna V.T. Afanasyev-Charkin I.V. Kazarinov Y.G. Sickafus K.E. Vacuum 81 (2006) 174.

  • [14] Izumi K. Mizokawa T. Hanamura E. J. Appl. Phys. 102 (2007) 053109.

  • [15] Zheng C.W. Wu S.Y. Chen X.M. Song K.X. J. Am. Ceram. Soc. 90 (2007) 1483.

  • [16] Iqbal M.J. Ismail B. Rentenberger C. Ipse H. Mater. Res. Bull. 46 (2011) 2271.

  • [17] Nassar M.Y. Ahmed I.S. Samir I. Spectrochim. Acta A 131 (2014) 329.

  • [18] Yang L. Xia M. Babu N.H. Li J. Mater. Trans. 56 (2015) 277.

  • [19] Sokol M. Kalabukhov S. Shneck R. Zaretsky E. Frage N. J. Eur. Ceram. Soc. 37 (2017) 3417.

  • [20] Ghosh A. Das S.K. Biswas J.R. Tripathi H.S. Banerjee G. Ceram. Int. 26 (2000) 605.

  • [21] Hanamura E. Kawabe Y. Takashima H. Sato T. Tomita A. J. Nonlinear Opt. Phys. Mater. 12 (2003) 467.

  • [22] Jounini A. Yoshikawa A. Breiner A. Fukuda T. Boulon G. Phys. Stat. Sol. C 4 (2007) 1380.

  • [23] Zhang Y. Huang H. Zhang K. Du S. Yang Y. Wen M. Vacuum 146 (2017) 11.

  • [24] Cullity B.D. Elements of X-ray diffraction Addison- Wesley Publishing Company Massachusetts 1978.

  • [25] Kaygili O. Keser S. Tatar C. Koytepe S. Ates T. J. Therm. Anal. Calorim. 128 (2017) 765.

  • [26] Kaygili O. Keser S. Mater Lett. 141 (2015) 161.

  • [27] Saberi A. Golestani-Fard F. Sarpoolaky H. Willert-Porada M. Gerdes T. Simon R. J. Alloy. Compd. 462 (2008) 142.

  • [28] Sanjabi S. Obeydavi A. J. Alloy. Compd. 645 (2015) 535.

  • [29] Deraz N.M. Abd-Elkader O.H. Int. J. Electrochem. Sci. 8 (2013) 8632.

  • [30] Madhuri W. Roopas Kiran S. Penchal Reddy M. Ramamanohar Reddy N. Siva Kumar K.V. Mater. Sci.-Poland 35 (2017) 44.

  • [31] Kutty P.V.M. Dasgupta S. Ceram. Inter. 39 (2013) 7891.

  • [32] Mosayebi Z. Rezaei M. Hadian N. Kordshuli F.Z. Meshkani F. Mater. Res. Bull. 47 (2012) 2154.

  • [33] Pei L.Z. Yin W.Y. Wang J.F. Chen J. Fan C.G. Zhang Q.F. Mat. Res. 13 (2010) 339.

  • [34] Ewais E.M.M. Besisa D.H.A. El-Amir A.A.M. El-Sheikh S.M. Rayan D.E. J. Alloy. Compd. 649 (2015) 159.

  • [35] Gusmano G. Nunziante P. Traversa E. J. Eur. Ceram. Soc. 7 (1991) 31.

  • [36] Ewais E.M.M. El-Amir A.A.M. Besisa D.H.A. Esmat M. El-Anadouli B.E.H. J. Alloy. Compd. 691 (2017) 822.

  • [37] Alvar E.N Rezaei M. Alvar H.N. Feyzallahzadeh H. Yan Z.F. Chem. Eng. Commun. 196 (2009) 1417.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 142 142 30
PDF Downloads 48 48 12