Studies on Cu2SnS3 quantum dots for O-band wavelength detection

Open access

Abstract

In this communication, we report on Cu2SnS3 quantum dots synthesized by the solvothermal process using different solvents. The optical properties of the quantum dots are analyzed by UV-Vis-NIR and photoluminescence spectroscopy. The results suggest that Cu2SnS3 material has tunable energy bandgap and appropriate wavelength for fabrication of light emitting diodes and laser diodes as sources for fiber optic communication. They exhibit wide absorption in the near infrared range. Further morphological studies with the use of atomic force microscope confirm the surface topography and the existence of quantum dots. The observed characteristics prove the efficiency of Cu2SnS3 quantum dots for O-band wavelength detection used in fiber optic communication and solar cell applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Shen Y.R. The principles of non linear optics Wiley-Interscience United States 2002.

  • [2] Boyd R.W. Nonlinear optics Academic Press United States 2008.

  • [3] Xia F. Wang H. Xiao D. Dubey M. Ramasubramaniam A. Nat. Photon. 8 (2014) 899.

  • [4] Jason M. Auxier. Axel Schulzgen. Michael Morrell M. Brian R.W. Seppo Honkanen. Sabyasachi Sen. Nicholas F.B. Nasser Peyghambarian. Proc. SPIE 5709 (2005) 249.

  • [5] Landry M.L. Morrell T.E. Karagounis T.K. Hsia C.H. Wang C.Y. J. Chem. Edu. 91 (2014) 274.

  • [6] Zhou D. Lin M. Chen Z. Sun H. Zhang H. Sun H. Yang B. Chem. Mater. 23 (2011) 4857.

  • [7] Aldona Sashchiuk. Diana Yanover. Anna Rubin Brusilovski. Georgy I.M. Richard K.C. Roman Vaxenburg. Jenya Tilchin. Gary Zaiats. Efrat Lifshitz. Nanoscale 5 (2013) 7724.

  • [8] Sandra Dias. Kishan Kumawat. Shinjini Biswas. Salaru Babu Krupanidhi. Inorg. Chem. 56 (2017) 2198.

  • [9] Kamalanathan M. Hussain Shamima. Gopalakrishnan R. Vishista K. Mater. Technol. 2 (2017) 1.

  • [10] Asmaa Zaki M. Heba A.F. Ahmed Abd El Aziz. Moustafa H.A. IOSR J. Electron. Commun. Eng. 1 (2014) 64.

  • [11] Izawa T. Shibata N. Takeda A. Appl. Phys. Lett. 1 (1977) 33.

  • [12] Bredol M. Leers D. Boisselaar L. Hutjens M. J. Light. Technol. 10 (1990) 1536.

  • [13] Laurent Gasca DrakaBroadband Prop. 6 (2008) 83.

  • [14] Humbach O. Fabian H. Grzesik U. Haken U. Heitmann W. J. Non-Cryst. Solids 203 (1996) 19.

  • [15] Stone J. Walrafen G.E. J. Chem. Phys. 4 (1982) 1712.

  • [16] Tang Y. Peters J.D. Bowers J.E. Opt. Express 20 (2012) 11529.

  • [17] Turkiewicz J.P. de Waardt H. IEEE Photon. Technol. Lett. 24 (2012) 942.

  • [18] Kawamura D. Makino S. Kogo K. Matsuoka Y. Lee Y. Sugawara T. Tanaka S. 35th Eur. Conf. Exhibition Opt. Commun. (2012) 1.

  • [19] Fujisawa T. Kanazawa S. Takahata K. Ohki A. Ueda Y. Iga R. Sanjo H. Yamanaka T. Kohtoku M. Ishii H. Opt. Express 21 (2013) 182.

  • [20] Simoyama T. Matsuda M. Okumura S. Uetake A. Ekawa M. Yamamoto T. Eur. Conf. Exhibition Opt. Commun. OSA Tech. Dig. (Optical Society of America) 2 (2012) 11.

  • [21] Tanaka T. Nishihara M. Takahara T. Li L. Tao Z. Rasmussen J.C. Proc. SPIE 8646 (2012) 86460J-1.

  • [22] Fujisawa T. Takahata K. Kobayashi W. Tadokoro T. Fujiwara N. Kanazawa S. Kano F. Electron. Lett. 47 (2011) 708.

  • [23] Liang X. Cai Q. Xiang W. Chen Z. Zhong J. Wang Y. Shao M. Li Z. J. Mater. Sci. Technol. 29 (2013) 231.

  • [24] Partain L.D. Schneider R.A. Donaghey L.F. McLeod P.S. J. Appl. Phys. 57 (1985) 5056.

  • [25] Ettema A.R.H.F. Haas C. J. Phys. Condens. Matter 5 (1993) 3817.

  • [26] Dias S. Krupanidhi S.B. AIP Adv. 6 (2016) 025217.

  • [27] Tiwari D. Chaudhuri T.K. Shripathi T. Deshpande U. Sathe V.G. Appl. Phys. A 117 (2014) 1139.

  • [28] Suryawanshi M.P. Shin S.W. Ghorpade U.V. Gurav K.V. Hong C.W. Agawane G.L. Vanalakar S.A. Moon J.H. Yun J.H. Patil P.S. Kim J.H. Moholkar A.V. Electrochim. Acta 150 (2014) 136.

  • [29] Uma V.G. Mahesh P.S. Seung Wook Shin. Inyoung Kim. Seung Kyu Ahn. Jae Ho Yun. Chaehwan Jeong. Sanjay S.K. Jin Hyeok Kim. Chem. Mater. 10 (2016) 3308.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 69 14
PDF Downloads 41 41 9