Effect of addition of Cu on the properties of eutectic Sn-Bi solder alloy

Open access

Abstract

The present work reports the effect of Cu addition on the melting point, hardness and electrical resistivity of Sn-57 wt.% Bi eutectic solder alloy. Both binary eutectic Sn-57 wt.% Bi and ternary Sn-(57-x)Bi-xCu (x = 0.1, 0.3, 0.5, 0.7 and 1 wt.%) alloys containing various amounts of Cu were developed by melting casting route. The microstructure of the various solder alloys was analyzed using an optical microscope and a SEM. The variation in melting point, hardness and electrical resistivity of the Sn-Bi eutectic solder alloys with the addition of Cu was determined. The melting point of the eutectic Sn-Bi solder alloy was found to decrease up to the addition of 0.7 wt.% Cu. However, further addition of Cu led to an increase in the melting point of the alloy. Addition of Cu led to an increase in the hardness of the eutectic Sn-Bi solder alloy whereas the electrical resistivity of this alloy was found to increase up to the addition of 0.7 wt.% of Cu beyond which a decrease in the electrical resistivity was observed. A change in the microstructure of the solder alloy was observed when it was reheated above the melting temperature.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Wu C. M.L. Yu D.Q. Law C.M.T. Wang L. Mat. Sci. Eng. R 44 (2004) 1.

  • [2] Puttlitz K.J. Stalter K.A. Handbook of Lead- Free Solder Technology for Microelectronic Assemblies CRC Press 2004.

  • [3] Cheng S. Huang C.M. Pecht M. Microelectron. Reliab. 75 (2017) 77.

  • [4] Osório W.R. Peixoto L.C. Garcia L.R. Noël N.M. Garcia A. J. Alloy. Compd. 572 (2013) 97.

  • [5] Ma D. L. Wu P. T. Nonferr. Metal. Soc. 25 (2015) 1225.

  • [6] Frongia F. Pilloni M. Scano A. Ardu A. Cannas C. Musinu A. Borzone G. Delsante S. Novakovic R. Ennas G. J. Alloy. Compd. 623 (2015) 7.

  • [7] Mokhtari O. Nishikawa H. Trans. JWRI 44 (2015) 19.

  • [8] Yang F. Zhang L. Liu Z. Zhong S. Ma J. Bao LI. Adv. Mater. Sci. Eng. (2016) 1.

  • [9] Okamoto H. J. Phase Equilib. Diff. 31 (2010) 205.

  • [10] Miao H. W. Duh J. G. Mater. Chem. Phys. 71 (2001) 255.

  • [11] Saunders N. Miodownik A. P. Bull. Alloy Phase Diag. 11 (1990) 278.

  • [12] Snugovsky L. Cermignani C. Perovic D.D. Rutter J. W. J. Electron. Mater. 33 (2004) 1313.

  • [13] Pearson W. B. A Handbook of Lattice Spacings and Structures of Metals and AlloysInternational Series of Monographs on Metal Physics and Physical Metallurgy 4 Pergamon 1958.

  • [14] Chang L. S. Straumal B. B. Rabkin E. Gust W. Sommer F. J. Phase Equilib. Diff. 18 (1997) 128.

  • [15] Chen S.W. Wang C.H. Lin S.K. Chiu C.N. J Mater. Sci.-Mater. El. 18 (2007) 19.

  • [16] Doi K. Ohtani H. Hasebe M. Mater. Trans. 45 (2004) 380.

  • [17] Dong W. Shi Y. Xia Z. Lei Y. Guo F. J. Electron. Mater. 37 (2008).

  • [18] Mei Z. Morris J. W. J. Electron. Mater. 21 (1992) 599.

  • [19] Shalaby R. M. Int. J. Phys. Res. 3 (2013) 1

  • [20] Lee C. B. Jung S.B. Shin Y.E. Shur C.C. Mater. Trans. 42 (2001) 751.

  • [21] Silva B.L. Xavier M.G.C. Garcia A. Spinelli J.E. Mater. Sci. Eng. A-Struct. 705 (2017) 325.

  • [22] Hou D. Li D. Han L. Ji L. J. Rare Earth. 29 (2011) 129.

  • [23] Şahin M. Şensoy T. Çadirli E. Mat. Res. 2018.

  • [24] Valdes L.B. Proc. IRE 42 (1954) 420.

  • [25] Mokhtari O. Nishikawa H. Mater. Sci. Eng. A-Struct. 651 (2016) 831.

  • [26] Issa T. T. Jasim F. N. Mohammed H. J. Abbas Z. K. AIP Conf. Proc. 1809 (2017) 020024.

  • [27] Wang F. Huang Y. Zhang Z. Yan C. Materials 10 (2017) 920.

  • [28] Felton L.E. Raeder C.H. Knorr D. B. JOM 45 (1993) 28.

  • [29] Silva B.L. Reinhart G. Nguyen-Thi H. Mangelinck-Noël N. Garcia A. Spinelli J.E. Mater. Charact. 107 (2015) 43.

  • [30] Zu F. Q. Zhou B. Li X. F. Yi X. Chen Y. P. Sun Q. Q. T. Nonferr. Metal. Soc. 17 (2007) 893.

  • [31] Yang Q.L. Shang J.K. J. Electron. Mater. 34 (11) (2005) 1363.

  • [32] Montesperelli G. Rapone M. Nanni F. Travaglia P. Riani P. Marazza R. Gusmano G. Mater. Corros. 59 (8) (2008) 662.

  • [33] Chuang T.H. Wu H.F. J. Electron. Mater. 40 (2011) 71.

  • [34] Shen J. Pu Y. Yin H. Luo D. Chen J. J. Alloy. Compd. 614 (2014) 63.

  • [35] Wang C. Y. Beckermann C. Mater. Sci. Eng. A-Struct. 171 (1993) 199.

  • [36] Mikolajczak P. Genau A. Ratke L. Metals 7 (2017) 363.

  • [37] Moon K.W. Boettinger W.J. Kattner U.R. Biancaniello F.S. Handwerker C.A. J. Electron. Mater. 29 (2000) 1122.

  • [38] Shalaby R.M. Int. J. Phys. Res. 3 (2013) 1.

  • [39] Sidorov V.E. Uporov S.A. Yagodin D.A. Grushevskii K.I. Uporova N.S. Samokhvalov D.V. High Temp.+ 50 (3) (2012) 348.

  • [40] Ghosh G. Miyake J. Fine M.E. JOM 49 (1997) 56.

  • [41] Shen J. Pu Y. Yin H. Tang Q. J. Electron. Mater. 44 (2015) 532.

  • [42] Zang L. Yuan Z. Zhao H. Zhang X. Mater.s Lett. 63 (2009) 2067.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 126 54
PDF Downloads 48 48 21