Characterization of the native oxide on CdTe surfaces

Open access

Abstract

This study focuses on the description of oxidation of CdTe monocrystal surfaces after selective chemical etching. Measurements of surface morphology of the oxides occurring in short time are valuable for deeper understanding of the material degradation and fabrication of reliable devices with enhanced performance. The samples with (1 1 1) orientation were selectively etched and cleaned of oxide. Exposure of the oxide-free surfaces of CdTe to air at normal atmospheric conditions over 24 hours leads to an appearance of characteristic surface features. The oxidized surfaces were investigated by scanning electron microscopy, scanning probe microscopy, Raman spectroscopy and ellipsometry. The results indicate clear differences in the oxidation of Cd-terminated and Te-terminated surfaces.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Ogawa K. Muraishi M. IEEE T. Nucl. Sci. 57 (2010) 17.

  • [2] Dallaeva D. Ramazanov SH. Prokopzeva E. Tomanek P. Grmela L. Proc. SPIE 9442 (2015) UNSP 944208.

  • [3] Skarvada P. Macku R. Dallaeva D. Sedlak P. Grmela L. Tomanek P. Proc. SPIE 9450 (2015) 94501M.

  • [4] Ramazanov SH. Talu S. Sobola D. Stach S. Ramazanov G. Superlattice. Microst. 86 (2015) 395.

  • [5] Ţălu Ş. Papež N. Sobola D. Achour A. Solaymani S. J. Mater. Sci. Mater. El. 15 (2017) 15370.

  • [6] Amézaga A. Holmström E. Lizárraga R. Menéndez-Proupin E. Bartolo-Pérez P. Giannozzi P. Phys. Rev. B 81 (2010).

  • [7] Zázvorka J. Franc J. Statelov M. Pekárek J. Veis M. Moravec P. Mašek K. Surf. Sci. 389 (2016) 1214.

  • [8] Korovyanko O.O. Shcherbak L.P. Nakonechnyi I.Y. Zakharuk Z.I. Fochuk P.M. Bolotnikov A.E. James R.B. J. Cryst. Growth 475 (2017) 26.

  • [9] Cohen-Taguri G. Levinshtein M. Ruzin A. Goldfarb I. Surf. Sci. 602 (2008) 712.

  • [10] Sobola D. Talu S. Sadovsky P. Papez N. Grmela L. Adv. Electr. Electron. Eng. 15 (2017).

  • [11] Knápek A. Sobola D. Tománek P. Pokorná Z. Urbánek M. Appl. Surf. Sci. 395 (2017) 157.

  • [12] Papez N. Škvarenina L. Tofel P. Sobola D. Proc. SPIE (2017).

  • [13] Knápek A. Sýkora J. Chlumská J. Sobola D. Microelectron. Eng. 173 (2017).

  • [14] Dallaeva D. Talu S. Stach S. Skarvada P. Tomanek P. Grmela L. Appl. Surf. Sci. (2014) 81.

  • [15] Stach S. Dallaeva D. Talu S. Kaspar P. Tomanek P. Giovanzana S. Grmela L. Mater. Sci.-Poland 33 (2015) 175.

  • [16] Hawkins S. A. Villa-Aleman E. Duff M.C. Hunter D.B. Burger A. Groza M. Buliga V. Black D.R. J. Electron. Mater. 37 (2008) 1438.

  • [17] Zázvorka J. Franc J. Beran L. Moravec P. Pekárek J. Veis M. Sci. Technol. Adv. Mater. 17 (2016) 792.

  • [18] George M.A. Collins W.E. Chen K.T. Hu Z. Egarievwe S.U. Zheng Y. Burger A. J. Appl. Phys. 77 (1995) 3134.

  • [19] Talu S. Stępień K. Caglayan M. O. Microsc. Res. Tech. 78 (2015) 1026.

  • [20] Méndez A. Reyes Y. Trejo G. Stępień K. Ţălu Ş. Microsc. Res. Tech. 78 (2015) 1082.

  • [21] Sobola D. Talu S. Solaymani S. Grmela L. Microsc. Res. Tech. 80 (2017) 1328.

  • [22] Garczyk Z. Stach S. Talu S. Sobola D. Wrobel Z. JBBBE 31 (2017) 1.

  • [23] Knapek A. Sykora J. Chlumska J. Sobola D. Microelectron. Eng. 173 (2017) 42.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 15
PDF Downloads 38 38 9