Ab initio study of GdCo5 magnetic and magneto-optical properties

Open access

Abstract

The full potential linearized augmented plane wave method (FLAPW) including the spin-orbit coupling has been used to study the structural, electronic and magnetic properties of GdCo5 compound. The calculations were performed within the local spin density approximation (LSDA) as well as Coulomb corrected LSDA + U approach. The study revealed that the LSDA + U method gave a better representation of the band structure, density of states and magnetic moments than LSDA. It was found that the spin magnetic moment of Co (2c) and Co (3g) atoms in the studied compound is smaller compared to the one in bulk Co. The optical and magneto-optical properties and the magneto-optical Kerr effect have also been investigated.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Buschow K.H.J. Rep. Prog. Phys. 40 (1977) 1179.

  • [2] Miletic G.I. Blazina Z. J. Magn. Magn. Mater. 321 (2009) 3888.

  • [3] Liebs M. Hurnmler K. Fahnlee M. Phys. Rev. B 46 (1992) 11201.

  • [4] Richter M. J. Phys. D Appl. Phys. 31 (1998) 1017.

  • [5] Miletic G.I. Blazina Z. J.Magn. Magn. Mater. 284 (2004) 312.

  • [6] Saini S.M. Singh N. Nautiyal T. Auluck S. J. Phys. Cond. Mater. 19 (2007) 176203.

  • [7] Śniadecki Z. Werwiński M. Szajek A. RÖssler U.K. Idzikowski B. J. Appl Phys. 115 (2014) 17E129.

  • [8] Pierunek N. Śniadecki Z. Werwiński M. Wasilewski B. Franco V. Idzikowski B. J. Alloy. Compd. 702 (2017) 258.

  • [9] Kuz’Min M.D. Skokov K.P. Radulov I. Schwöbel C.A. Foro S. Donner W. Werwiński M. Rusz J. Delczeg-Czirjak E. Gutfleisch O. J. Appl. Phys. 118 (2015) 053905.

  • [10] Kravets V.G. Poperenko L.V. Shaikevich I.A. Soviet Phys. J. 31 (1988) 1007.

  • [11] Sharipov SH.M. Mukimov K.M. Ernazaroval A. Andereyev A.V. Kudervatykh N.V. Phys. Met. Metall. 69 (1990) 50.

  • [12] Nikitin S.A. Bogdanov A.E. Morozkin A.V. Knotko A.V. Yapaskurt V.O. Ovchenkova I.A. Smirnov A.V. Nirmala R. Quezado S. Malik S.K. Mater. Res. Express 5 (2018) 036109.

  • [13] Futamoto M. Ohtake M. Jpn. J. Magn. Soc. 41 (2017) 108.

  • [14] Patrick C.E. Kumar S. Balakrishnan G. Edwards R.S. Lees M.R. Petit L. Staunton J.B. Phys. Rev. Lett. 120 (2018) 097202.

  • [15] Blaha P. Madsen G. Schwarz K. Kvasnicka D. Luitz J. WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties TU Vienna Austria 2001.

  • [16] Perdew J.P. Wang Y. Phys. Rev. B 45 (1992) 13244.

  • [17] Anisimov V.I. Aryasetiawan F. Lichtenstein A.I. J. Phys-Condens. Mater. 9 (1997) 767.

  • [18] Yehia S. Aly S.H. Aly A.E. Comput. Mater. Sci. 41 (2008) 482.

  • [19] Harmon B.N. Antropov V.P. Lichtenstein A.I. Solovyev I.V. Anisimov V. I. J. Phys. Chem. Solids 56 (1995) 1521.

  • [20] Ido H. Nanjo M. Yamada M. J. Appl. Phys. 75 (1994) 7140.

  • [21] Hummler K. Fahnle M. Phys. Rev. B 53 (1996) 3272.

  • [22] Campbell I.A. J. Phys. F. Metal. Phys. 2 (1972) L47.

  • [23] Hirohata A. Takanashi K. J. Phys. D Appl. Phys. 47 (2014) 193001.

  • [24] Zhang H. Richter M. Koepernik K. Opahle I. Tasnadi F. Eschrig H. New J. Phys. 11 (2009) 043007.

  • [25] Grundy P.J. Mater. Sci. Technol. B 3 (1994) 568.

  • [26] Kubo R. Jpn. J. Phys. Soc. 12 (1957) 570.

  • [27] Kubo J. Jpn. J. Phys. Soc. 12 (1972) 570.

  • [28] Wang C.S. Callaway J. Phys. Rev. B 9 (1974) 4897.

  • [29] Erskine J.L. AlP Conf. Frec. 24 (1975) 190.

  • [30] Kumar M. Nautiyal T. Auluck S. Eur. Phys. J. B 73 (2010) 423.

  • [31] Hansen P. Clausen C. Much G. Rosenkranz M. Witter K. J. Appl. Phys. 66 (1989) 756.

  • [32] Cai J. Tao X.A. Chen W. Zhao X. Tan M. J. Magn. Magn. Mater. 292 (2005) 476.

  • [33] Wen H. Kawazoe Y. Dong J. Phys. Rev. B 74 (2006) 085205.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 73 73 26
PDF Downloads 42 42 17