The effects of deposition potential on the optical, morphological and mechanical properties of DLC films produced by electrochemical deposition technique at low voltages

Open access

Abstract

Diamond-like carbon (DLC) films were electrochemically deposited onto indium tin oxide (ITO) substrates using acetic acid and deionized water as electrolyte at low deposition voltages (2.4 V and 60 V). The transmittance of the films was investigated by UV spectrometry. Transmittance measurements versus wavelength revealed that the films transmit 86 % to 89 % light in visible region and band gap of the films varies between 3.87 eV and 3.89 eV. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used for structural characterization to evaluate surface morphology of the DLC films. The grain size and the surface roughness increased for the films prepared at higher deposition potential, while their measured average height decreased. The mechanical properties (hardness H and elastic modulus Er) were determined from load-displacement curves which were obtained by using nanoindentation method. Hardness and elastic modulus of the films increased as the deposition voltage of the films increased from 2.4 V to 60 V.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Basman N. Aslan N. Uzun O. Cankaya G. Kolemen U. Microelec. Eng. 140 (2015) 18.

  • [2] Gupta S. Chowdhury M.P. Pal A.K. Dia. Rel. Mater. 13 (2004) 1680.

  • [3] Yan X.B. Xu T. Chen G. Liu H.W. Yang S.R. Carbon 42 (2004) 3103.

  • [4] Nery R.P.O.S. Bonelli R.S. Camargo JR S.S. J. of Mater. Sci. 45 (2010) 5472.

  • [5] Zhou B. Rogachev A.V. Liu Z.H. Jiang X. Shen R. Rudenkov A.S. Surf. Coat. Technol. 208 (2012) 101.

  • [6] Chaus A.S. Fedosenko T.N. Rogachev A.V. ČaploviČ L. Dia. Rel. Mater. 42 (2014) 64.

  • [7] Libardi J. Grigorov K. Massi M. Otani C. Ravagnani S.P. Maciel H.S. Guerino M. Ocampo J.M.J. Thin Solid Films 459 (2004) 282.

  • [8] Sanchez N.A. Rincon C. Zambrano G. Galindo H. Prieto P. Thin Solid Films 373 (2000) 247.

  • [9] Seker Z. Ozdamar H. Esen M. Esen R. Kavak H. Appl. Surf. Sci. 314 (2014) 46.

  • [10] Mosayebi M.J. Hosseini S.R. Surf. Eng. 31(2015) 96.

  • [11] Guo P. Sun L. Li X. Xu S. Ke P. Wang A. Thin Solid Films 584 (2015) 289.

  • [12] Cao C. Zhu H. Wang H. Thin Solid Films 368 (2000) 203.

  • [13] Roy R.K. Deb B. Bhattacharjee B. Pal A.K. Thin Solid Films 422 (2002) 92.

  • [14] Robertson J. Mater.Sci. and Eng. R37 (2002) 129.

  • [15] Sreejith K. Nuwad J. Pillai C.G.S. Appl. Surf. Sci. 252 (2005) 296.

  • [16] Wan S. Wang L. Xue Q. Electroch. Comm. 12 (2010) 61.

  • [17] Oliver W.C. Pharr G.M. J. Mater. Res. 7 (1992) 1564.

  • [18] Manifacier J.C. Gasiot J. Fillard J.P. J. Phys. E 9 (1976) 1002.

  • [19] Swanopel R. J. Phys. E 16 (1983) 1214.

  • [20] Pankove J.I. Optical process in semiconductors Dover Publications New York 2010.

  • [21] Uzun O. Başman N. Alkan C. Kölemen U. Yilmaz F. Poly. Bull. 66 (2011) 649.

  • [22] Bartali R. Micheli V. Gottardi G. Vaccari A. Laidani N. Surf. Coat. Technol. 204 (2010) 2073.

  • [23] Gong J. Wu J. Guan Z. J. Eur. Ceram. Soc. 19 (1999) 2625.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 112 112 29
PDF Downloads 66 66 15