This paper attempts to describe an effective method for producing a composite of quantum dots consisting of CdSe (core) with CdS (shell). This nanoparticles composite was synthesized from modified organometallic precursors. The sizes of the nanoparticles were estimated from X-ray diffraction data using Debye-Scherer formula and compared with high resolution electron microscopy (HRTEM) and optical spectra. The shape of CdSe/CdS NPs is nearly spherical and revels that the CdS shell with the thickness ~0.6 nm almost fully covers the CdSe core (higher contrast). Using UV-Vis spectroscopy, a systematic red shift in the absorption and emission spectra was observed after the deposition of CdS which confirms the shell growth over the CdSe core. In the CdSe/CdS core/shell structure, the holes are confined to the core, while the electrons are delocalized as a result of similar electron affinities of the core and the shell. The increased time of synthesis resulted in shell thickness increase. The observed properties of prepared CdSe/CdS QDs demonstrate the capability of the nanocomposite for using in the optoelectronics and photonics devices.
[1] Steigerwald M.L. Polyhedron 8 (1994) 1245.
[2] Mansur H.S. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2 (2010) 113.
[3] Park J. Lee K.H. Galloway J.F. Searson P.C. J. Phys. Chem. 46 (2008) 17849.
[4] Eychmüller A. Rogach A.L. Pure Appl. Chem. 1 – 2 (2000) 179.
[5] Murry C.B. Norris D.J. Bawendi M.G. J. Am. Chem. Soc. 19 (1993) 8706.
[6] Embden J.V. Jasieniak J. Gomez D.E. Mulvaney P. Giersig M. Aust. J. Chem. 7 (2007) 458.
[7] Harrison M.T. Kershaw S.V. Burt M.G. Eychmuller A. Weller H. Rogach A.L. Mater. Sci. Eng. B-Adv. 69 (2000) 355.
[8] Sharm N. Vats T. Dhenadhayalan N. Ramamurthy P. Narula A.K. Sol. Energ. Mater. Sol. C. 100 (2012) 6.
[9] Neeleshwar S. Chen C.L. Tasi C.B. Chenmy. Y. Phys. Rev. B 20 (2005) 201307(R).
[10] Liaw Y.F. Li W.J. J. Zhejiang Uni. Sci. A 9 (2007) 133.
[11] Sun M. Yu H. Yang W. Qi L. Yang F. Yang X. Colloids Surf. A Physicochem. Eng. Asp. 1 – 3 (2009) 91.
[12] Yang D. Chen Q. Xu S. J. Lumin. 2 (2007) 853.
[13] Talapin D.V. Rogach A.L. Kormowski A. Haase M. Weller H. Nano Lett. 4 (2001) 207.
[14] Tian Y. Newton T. Kotov N.A. Guldi D.M. Fendler J. J. Chem. Phys. 21 (1996) 8927.
[15] Youn H.C. Baral S. Fendler J.H. J. Phys. Chem. 22 (1988) 6320.
[16] Kortan A.R. Hull R. Opila R.L. Bawendi M.G. Steigerwald M.L. Carroll P.J. Brus L.E. J. Am. Chem. Soc. 4 (1990) 1327.
[17] Mews A. Eychmuller A. Giersig M. Schooss D. Weller H. J. Phys. Chem. 3 (1994) 934.
[18] Hines M.A. Guyot-Sionnest P. J. Phys. Chem. 2 (1996) 468.
[19] Klimov V.I. Nanocrystal quantum dots Taylor & Francis Group New York 2010.
[20] Ledentsov N.N. Semicond. News 2 (2001) 22.
[21] Klimov V.I. Mikhailovsky A.A. Xu S. Malko A. Hollingsworth J.A. Leatherdale C.A. Eisler H. Bawendi M.G. Science 5490 (2000) 314.
[22] Schaller R.D. Petruska M.A. Klimov V.I. J. Phys. Chem. B 50 (2003) 13765.
[23] Htoon H. Hollingsworth J.A. Dickerson R. Klimov V.I. Phys. Rev. Lett. 22 (2003) 227401.
[24] Cao Y. Banin U. J. Am. Chem. Soc. 40 (2000) 9692.
[25] Lamer V.K. Dinegar R.H. J. Am. Chem. Soc. 11 (1950) 4847.
[26] KUMARAN S.M. GOPALAKRISHNAN R. J. Sol- Gel. Sci. Technol. 2 (2012) 193.
[27] Yu W.W. Qu L. Guo W. Peng X. Chem. Mater. 14 (2003) 2854.
[28] Liu S.M. Guo H.Q. Zhang Z.H. Li R. Chen W. Wang Z.G. Phys. E. 2 (2000) 174.
[29] Ethayaraja M. Ravikumar C. Muthukumaran D. Dutta K. Bandyopadhyaya R. J. Phys. Chem. 8 (2007) 3246.
[30] Nguyen H.Q. Adv. Nat. Sci. Nanosci. Nanotechnol. 2 (2010) 025004.