Effect of Mn content in Fe(1−x)MnxB (x = 0, 0.25, 0.5, 0.75 and 1) on physical properties - ab initio calculations

Open access

Abstract

Structural, electronic, intrinsic magnetic, anisotropic elastic properties, sound velocities and Debye temperature of Fe1−xMnx B (x = 0, 0.25, 0.5, 0.75, 1) transition metal monoborides have been studied by first-principles calculations within the method of virtual crystal approximation (VCA) based on density-functional theory (DFT) through generalized gradient approximation (GGA). The average magnetic moment per cell increased with increasing of Mn content, which could be associated with the relationship between the composition and magnetic properties. The observed magnetic behavior of Fe1−xMnx B compounds can be explained by Stoner model. Lattice parameters and Debye temperature agree well with the experimental values. Furthermore, we have plotted three-dimensional (3D) surfaces and planar contours of the directional dependent Young and bulk moduli of the compounds on several crystallographic planes, to reveal their elastic anisotropy versus Mn content (x) in Fe1−xMnx B.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Mohn P. Pettifor D. J. Phys. C 21 (1988) 2829.

  • [2] Malozemoff A. Williams A. Moruzzi V. Phys. Rev. B 29 (1984) 1620.

  • [3] Ching W. Xu Y.N. Harmon B. Ye J. Leung T. Phys. Rev. B 42 (1990) 4460.

  • [4] Hausleitner C. Hafner J. Phys. Rev. B 47 (1993) 5689.

  • [5] Zhong W. Overney G. Toma D. Phys. Rev. B 47 (1993) 95.

  • [6] Kervan S. J. Supercond. Nov. Magn. 24 (2011) 815.

  • [7] Wang C. Wang Z.C. Mei Y.X. Li Y.K. Li L. Tang Z.T. Liu Y. Zhang P. Zhai H.F. Xu Z.A. J. Am. Chem. Soc. 138 (2016) 2170.

  • [8] Hafner J. Tegze M. Becker C. Phys. Rev. B 49 (1994) 285.

  • [9] Taylor J. Duffy J. Bebb A. Cooper M. Dugdale S. McCarthy J. Timms D. Greig D. Xu Y. Phys. Rev. B 63 (2001) 220404.

  • [10] Jing C. Cao S. Zhang J. Phys. Rev. B 68 (2003) 224407.

  • [11] Gueddouh A. Bentria B. Lefkaier I. J. Magn. Magn. Mater. 406 (2016) 192.

  • [12] Guo Z.X. Multiscale materials modelling: Fundamentals and applications Elsevier 2007.

  • [13] Wisniewski R. Rostocki A. Magiera A. Zych W. J. Magn. Magn. Mater. 81 (1989) 121.

  • [14] Soumura T. Takeda K. Wakano T. Terasawa K. Maeda T. J. Magn. Magn. Mater. 58 (1986) 202.

  • [15] Zhu H. Ni C. Zhang F. Du Y. Xiao J.Q. J. Appl. Phys. 97 (2005) 10M512.

  • [16] Bratkovsky A. Rashkeev S. Wendin G. Phys. Rev. B 48 (1993) 6260.

  • [17] Nordheim L. Ann. Phys. 401 (1931) 607.

  • [18] Segall M. Lindan P.J. Probert M.A. Pickard C. Hasnip P. Clark S. Payne M. J. Phys. Condens. Matter. 14 (2002) 2717.

  • [19] Perdew J.P. Burke K. Ernzerhof M. Phys. Rev. Lett. 77 (1996) 3865.

  • [20] Monkhorst H.J. Pack J. D. Phys. Rev. B 13 (1976) 5188.

  • [21] Broyden C.G. IMA J. Appl. Math. 6 (1970) 76.

  • [22] Fletcher R. Comput. J. 13 (1970) 317.

  • [23] Goldfarb D. Math. Comput. 24 (1970) 23.

  • [24] Shanno D.F. Math. Comput. 24 (1970) 647.

  • [25] Bjurström T. Röntgenanalyse der Systeme Eisen-Bor Kobalt-Bor und Nickel-Bor Almqvist & Wiksell 1933.

  • [26] Hanson B. Mahnig M. Toth L.E. Z. Naturforsch. 26 (1971) 739.

  • [27] Turchanin M. Agraval P. Powder Metall. Met. Ceram. 47 (2008) 26.

  • [28] Havinga E. Damsma H. Hokkeling P. J. Less. Common. Met. 27 (1972) 169.

  • [29] Hill R. Proc. Phys. Soc. 65 (1952) 349.

  • [30] Janak J. Phys. Rev. B 16 (1977) 255.

  • [31] Lee P.H. Chen S.H. Chen Y.A. Chen K.L. Wang T.W. Baoj Phys. 2 (2016).

  • [32] Lee P. Xiao Z. Chen K. Chen Y. Kao S. Chin T. Physica B 404 (2009) 1989.

  • [33] Landau L. Sov. Phys. Jetp. 3 (1957) 920.

  • [34] Landau L. Sov. Phys. Jetp. 8 (1959) 70.

  • [35] Gao X. Jiang Y. Zhou R. Feng J. J. Alloy. Compd. 587 (2014) 819.

  • [36] Duan Y. Sun Y. Peng M. Zhou S. J. Alloy. Compd. 595 (2014) 14.

  • [37] Gueddouh A. Bentria B. Bourourou Y. Maabed S. Mater. Sci.-Poland 34 (2016) 503.

  • [38] Sun L. Gao Y. Xiao B. Li Y. Wang G. J. Alloy. Compd. 579 (2013) 457.

  • [39] Music D. Houben A. Dronskowski R. Schneider J.M. Phys. Rev. B 75 (2007) 174102.

  • [40] Niu H. Chen X.Q. Ren W. Zhu Q. Oganov A.R. Li D. Li Y. Phys. Chem. Chem. Phys. 16 (2014) 15866.

  • [41] Li L.H. Wang W.L. Hu L. Wei B.B. Intermetallics 46 (2014) 211.

  • [42] Gueddouh A. Phase Transitions 90 (2017) 984.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 497 495 10
PDF Downloads 190 190 9