Controlling of optical band gap of the CdO films by zinc oxide

Open access

Abstract

In this study, CdZnO films prepared at different ratios of dopants (CdO:ZnO = 5:5, CdO:ZnO = 6:4, and CdO:ZnO = 8:2) were coated on glass surface by using the sol-gel spin coating technique. After this process, surface structure and optical properties of the CdZnO films was investigated by atomic force microscopy (AFM) and UV-Vis spectroscopy. The surface structure of the CdZnO films depended on the content of ZnO and CdO in the films. Low percentage of CdO films were very similar to the ZnO film but higher amount of CdO resuted in granular structures together with pure structure of ZnO in the films. Eg values of produced CdZnOs depended on the additions of CdO and ZnO. The obtained Eg values of the produced CdO:ZnO = 5:5 (S3), CdO:ZnO = 6:4 (S4), and CdO:ZnO = 8:2 (S5) films are 2.5 eV, 2.49 eV, and 2.4 eV, respectively.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Dagdelen F. Serbetci Z. Gupta R.K. Yakuphanoglu F. Mater. Lett. 80 (2012) 127-130.

  • [2] Gupta R.K. Cavaş M. Yakuphanoğlu F. Spectrochim Acta. - Part A Mol Biomol Spectrosc 95 (2012) 107-113.

  • [3] İsmail R.A. Abdulrazaq O.A. Sol. Energy Mater. Sol Cells 91 (2007) 903-907.

  • [4] Kim H. Horwitz J.S. Kustho G.P. Qadri S.B. Kafafi Z.H. Chrisey D.B. Appl. Phys. Lett. 78 (2001) 1050-1052.

  • [5] Lokhande B.J. Patil P.S. Uplane M.D. Mater. Chem. Phys. 84 (2004) 238-242.

  • [6] Subramanyam T. Uthanna S. Srinivasulu Naidu B. Mater. Lett. 35 (1998) 214-220.

  • [7] Balasubramanian M. Jayabalan V. Balasubramanian V. Mater. Des. 29 (2008) 92-97.

  • [8] Pathak T.K. Rajput J.K. Kumar V. Purohit L.P. Swart H.C. Kroon R.E. J Colloid Interface Sci. 487 (2017) 378-387.

  • [9] Reddy K.T.R Shanthini G.M. Johnston D. Miles R.W. Thin Solid Films 427 (2003) 397-400.

  • [10] El Sayed A.M. Taha S. Said G. Yakuphanoğlu F. Superlattices Microstruct. 65 (2014) 35-47.

  • [11] Maiti U.N. Ghosh P.K. Ahmed S.F. Mitra M.K Chattopadhyay K.K. J. Sol-Gel Sci. Technol. 41 (2007) 87-92.

  • [12] Thirumoorthi M. Prahash J.T.J. J Asian. Ceram. Soc. 4 (2016) 39-45.

  • [13] Ziabari A.A. Ghods F.E. J Alloys Compd. 509 (2011) 8748-8755.

  • [14] Verma K. Chaudhary B. Kumar V. Sharma V. Kumar M. Vacuum 146 (2017) 524-529.

  • [15] Mia M.N.H. Pervez M.F. Hossain M.K. et al. Results Phys. 7 (2017) 2683-2691.

  • [16] Huang B. Chu H.L. Wang M.C. Liu C. Hwang W.S. Zhao X. Ceram. Int. 42(2016) 17843-17852.

  • [17] Dahnoun M. Attaf A. Saidi H. Yahia A. Khelifi C. Optik (Stuttg) 134 (2017) 53-59.

  • [18] Khan M.I. Bhatti K.A. Qindeel R. Alonizan N. Althobaiti H.S. Results Phys. 7 (2017) 651-655.

  • [19] Patil N.B. Nimbalkar A.R. Patil M.G. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 227 (2018) 53-60.

  • [20] Chavan A. Shivaraj B.W. Murthy H.N.N. et al. Procedia Mater. Sci. 10 (2015) 270-278.

  • [21] Alahmed Z.A. Albrithen H.A. Al-Ghamdi A.A. Yakuphanoğlu F. Optik (Stuttg) 126 (2015) 575-577.

  • [22] Turgut G. Tatar D. Optik (Stuttg) 145 (2017) 292-303.

  • [23] Aydemir S. Köse S. Selami Kiliçkaya M. Özkan V. Superlattices Microstruct. 71 (2014) 72-81.

  • [24] Yahia I.S. Salem G.F. Iqbal J. Yakuphananoğlu F. Phys. B Condens. Matter 511 (2017) 54-60.

  • [25] Kakani S.L. Kakani A. Material Science New Age International Bhilwara 2004.

  • [26] Jule L.T. Dejene F.B. Ali A.G. et al. J. Alloys Compd. 6872016920-926.

  • [27] Yakuphanoğlu F. J. Alloys Compd. 507 (2010) 184-189.

  • [28] Reddy C.V. Babu B. Shim J. J.Phys. Chem. Solids 112 (2018) 20-28.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 611 611 11
PDF Downloads 294 294 14