Growth and physicochemical characterization of calcium cadmium thiocyanate CaCd(SCN)4 single crystals

Abstract

It is important to grow and characterize new bimetallic thiocyanate single crystals as they are expected to exhibit useful optical and electrical properties. In the present study, calcium cadmium thiocyanate CaCd(SCN)4 single crystals were grown by slow evaporation of solvent and were characterized chemically, structurally, thermally, optically and electrically. X-ray diffraction analysis indicates that the grown crystal belongs to the tetragonal crystal system with lattice parameters: a = b = 12.2491(7) Å and c = 15.1012(5) Å. EDAX spectral analysis confirms the expected chemical composition. Thermogravimetric (TG/DTA) measurement implies good thermal stability. Optical (UV-Vis-NIR absorption spectral and SHG efficiency) measurements suggest good optical absorption in the UV and blue regions and the SHG efficiency of 6.13 (in urea unit). The dielectric measurements carried out in the temperature range of 40 °C to 150 °C at five different frequencies, viz. 100 Hz, 1 kHz, 10 kHz, 100 kHz and 1 MHz indicate a normal dielectric behavior.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Ginson Joseph P., Rajarajan K., Vimalan M., Selvakumar S., Ravi Kumar S.M., Madhavan J., Sagayaraj P., Mater. Res. Bull., 42 (2007), 2040.

  • [2] Ginson Joseph P., Rajarajan K., Vimalan M., Thomas P.C., Madhavan J., Ravi Kumar S.M., Gulam Mohamed, Mani G., Sagayaraj P., Cryst. Res. Technol. 42 (2007), 247.

  • [3] Pearson R.G., J. Am. Chem. Soc., 85 (1963), 3533.

  • [4] Balarew C., Duhlew R., J. Solid State Chem., 55 (1984), 1.

  • [5] Latha C., Mahadevan C.K., Li Guo, Jinghe Liu, J. Cryst. Growth, 486 (2018), 148.

  • [6] Kurtz S.K., Perry T.T., J. Appl. Phys., 39 (1968), 3798.

  • [7] Priya M., Mahadevan C.K., Physica B, 403 (2008), 67.

  • [8] Manonmani N., Mahadevan C.K., Umayorubhagan V., Mater. Manuf. Process., 23 (2008), 3742.

  • [9] Selvarajan G., Mahadevan C.K., J. Mater. Sci., 41 (2006), 8218.

  • [10] Goma S., Padma C.M., Mahadevan C.K., Mater. Lett., 60 (2006), 3701.

  • [11] Meena M., Mahadevan C.K., Mater. Lett., 62 (2008), 3742.

  • [12] Suthan T., Dhanaraj P.V., Rajesh N.P., Mahadevan C.K., Bhagavannarayana G., CrystEng-Comm, 13 (2011), 4018.

  • [13] Baig M.I., Mohd Anis, Muley G.G., Opt. Mater., 72 (2017), 1.

  • [14] Mohd Anis, Ramteke S.P., Shirsat M.D., Muley G.G., Baig M.I., Opt. Mater., 72 (2017), 590.

  • [15] Shaikh R.N., Mohd Anis, Shirsat M.D., Hussaini S.S., Optik, 154 (2018), 435.

  • [16] Pahurkar V.G., Mohd Anis, Baig M.I., Ramteke S.P., Babu B., Muley G.G., Optik, 142 (2017), 421.

  • [17] Rasal Y.B., Mohd Anis, Shirsat M.D., Hussaini S.S., Mater. Res. Innov., 21 (1) (2017), 45.

  • [18] Annie Freeda M., Mahadevan C.K., J. Alloy. Compd., 726 (2017), 1.

  • [19] Xinqiang W., Xu D., Lu M.K., Yuan D.R., Zhang G.H., Meng F.Q., Guo S.Y., Zhou M., Liu J.R., Li X.R., Cryst. Res. Technol., 36 (2001), 73.

  • [20] Xinqiang W., Xu D., Lu M.K., Yuan D.R., Xu S.X., Mater. Res. Bull., 36 (2001), 879.

  • [21] Latha C., Mahadevan C.K., Li Guo, Jinghe Liu, J. Cryst. Growth, 490 (2018), 46.

  • [22] Varotsos P.A., J. Physiq. Lett., 39 (1978), L79.

  • [23] Priya M., Mahadevan C.K., Cryst. Res. Technol., 44 (2009), 92.

  • [24] Lydia Caroline M., Vasudevan S., Mater. Chem. Phys., 113 (2009), 670.

  • [25] Mohd Anis, Hussaini S.S., Mohd Shkir, Alfaify S., Baig M.I., Muley G.G., Optik, 157 (2018), 592.

  • [26] Sivasubramani V., Mohd Anis, Hussaini S.S., Muley G.G., Senthil Pandian M., Ramasamy P., Mater. Res. Innov., 21(7) (2017), 426.

  • [27] Ramteke S.P., Mohd Anis, Baig M.I., Muley G.G., Optik, 154 (2018), 275.

  • [28] Mohd Anis, Muley G.G., Pahurkar V.G., Baig M.I., Dagdale S.R., Mater. Res. Innov., 22(2) (2018), 99.

  • [29] Miller J., Appl. Phys. Lett., 5 (1964), 17.

  • [30] Kittel C., Introduction to Solid State Physics, 7th ed., John Wiley & Sons, Singapore, 2005.

OPEN ACCESS

Journal + Issues

Search