Influence of molar concentration and temperature on structural, optical, electrical and X-ray sensing properties of chemically grown nickel-bismuth-sulfide (NixBi2−xS3) thin films

Open access

Abstract

In this report, ternary semiconducting NixBi2−xS3(x = 0.2 M and 0.5 M) thin films were synthesized in situ for the first time by a chemical bath deposition technique at different bath temperatures (60 °C, 70 °C and 80 °C). The effects of concentration and deposition temperature on the deposited films were studied by combining the results of structural, morphological, optical and electrical analyses. The growth of NixBi2−xS3 films with good crystalline nature and interconnected grain arrangement takes place due to increasing the concentration of Ni2+ ions in bismuth sulfide matrix. EDS result confirmed the stoichiometry of NixBi2−xS3 formation. Wettability test demonstrated that the surface of the film was hydrophilic in nature. The optical absorption spectra revealed that the bandgap Eg of the x = 0.5 M film deposited at 70 °C was about 1.36 eV. Current-voltage (I-V) characteristics of the x = 0.5 M film deposited at 70 °C were studied under X-ray radiation and dark condition. An X-ray detection sensitivity analysis showed that the detection sensitivity is optimum when the bias voltage applied across the film is low (~0.9 V). These findings reveal that the film with x = 0.5 M deposited at 70 °C can be used as an efficient low cost X-ray sensor.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Vigil-Galan O. Pulgarín F.A. Cruz Gandarilla F. Courel M. Villarreal Ruiz G. Sanchez Y. Jiménez Olarte D. Saucedo E. Mater. Design 99 (2016) 254.

  • [2] Yang M. Zhang T. Schulz P. Li Z. Li G. Kim D.H. Guo N. Berry J.J. Zhu K. Zhao Y. Nat. Commun. 7 (2016) 12305.

  • [3] Kaur M. Dadhich B.K. Singh R. Kailasaganapathi Bagwaiya T. Bhattacharya S. Debnath A.K. Muthe K.P. Gadkari S.C. Sensor. Actuat. A-Phys. 242 (2017) 389.

  • [4] Pandit B. Sharma G.K. Sankapal B.R. J. Colloid Interf. Sci. 505 (2017) 1011.

  • [5] Li J. Kim S.Y. Nam D. Liu X. Kim J.H. Cheong H. Liu W. Li H. Sun Y. Zhang Y. Sol. Energ. Mat. Sol. C. 159 (2017) 447.

  • [6] Medles M. Benramdane N. Bouzidi A. Nakrela A. Tabet-Derraz H. Kebbab Z. Mathieu C. Khelifa B. Desfeux R. Thin Solid Films 497 (2006) 58.

  • [7] Mahendran C. Suriyanarayanan N. Physica B 405 (2010) 2009.

  • [8] Mahendran C. Suriyanarayanan N. Physica B 408 (2013) 62.

  • [9] Kandaswamy K. Selvin C.P. Nalini B. Abdulla M.I. Abhilash K.P. Adv. Mater. Res. 678 (2013) 123.

  • [10] Repins I. Beall C. Vora N. Dehart C. Kuciauskas D. Dippo P. To B. Mann J. Hsu W.C. Goodrich A. Noufi R. Sol. Energ. Mat. Sol. C. 101 (2012) 154.

  • [11] Damisa S. Olofinjana J. Ebomwonyi B. Bakare O. Azi F. Mater. Res. Express (2017) 2053.

  • [12] Haider A. Kizir S. Ozgit Akgun C. Okyay A.K. Biyikli N. J. Vac. Sci. Technol. A 34 (2016) 01A123.

  • [13] Muthukumaran S. Ashok Kumar M. Mater. Lett. 93 (2013) 223.

  • [14] Soumya R. Ajaya K. Lata D. Narendra Pratap S. Mariya P. J. Fluoresc. 26 (2015) 459.

  • [15] Balasubramanian V. Suriyanarayanan N. Prabahar S. Chalcogenide Lett. 8 (2011) 637.

  • [16] Balasubramanian V. Suriyanarayanan N. Mater. Lett. 91 (2013) 362.

  • [17] Deshmukh S.G. Panchal A.K. Vipul K. AIP Conf. Proc. (2016) 20023.

  • [18] Xuelian Y. Cao ChuanbaoCryst. Growth Des. 2008 (2008) 1.

  • [19] Mane R.S. Sankapal B.R. Lokhande C.D. Mater. Chem. Phys. 60 (1999) 158.

  • [20] Liu C. Yang Y. Li W. Li J. Li Y. Chen Q. Sci. Rep.-UK 6 (2016) 23451.

  • [21] Hammad A.H. Elmandouh Z.S. Elmeleegi H.A. Acta Phys. Pol. A 127 (2015) 901.

  • [22] Lai C.H. Huang K.W. Cheng J.H. Lee C.Y. Lee W.F. Huang C.T. Hwang B.J. Chen L.J. J. Mater. Chem. 19 (2009) 7277.

  • [23] Wang J. Chew S.Y. Wexler D. Wang G.X. Ng S.H. Zhong S. Liu H.K. Electrochem. Commun. 9 (2007) 1877.

  • [24] Zhao W. Zhu X. Bi H. Cui H. Sun S. Huang F. J. Power Sources 242 (2013) 28.

  • [25] Wang A. Wang H. Zhang S. Mao C. Song J. Niu H. Jin B. Tian Y. Appl. Surf. Sci. 282 (2013) 704.

  • [26] Ubale A.U. Mater. Chem. Phys. 121 (2010) 555.

  • [27] Fazal T. Ismail B. Wafee S. Kambooh A.H. Khan A.R. Chalcogenide Lett. 13 (2016) 225.

  • [28] On BP. Tubtimtae A. Vailikhit V. Teesetsopon P. Choopun S. Phys. Lett. A 381 (2017) 1807.

  • [29] Patterson A.L. Phys. Rev. 56 (1939) 978.

  • [30] Williamson G.K. Hall W.H. Acta Metall. Sin. 1 (1953) 22.

  • [31] Williamson G.K. Smallman R.E. Philos. Mag. 1 (1956) 34.

  • [32] Horcas I. Fernández R. Gómez Rodríguez J.M. Colchero J. Gómez Herrero J. Baro A.M. Rev. Sci. Instrum. 78 (2007).

  • [33] He H.Y. Fei J. Lu J. Mater. Manuf. Process 29 (2014) 1044.

  • [34] Sadananda Kumar N. Bangera K.V. Shivakumar G.K. Semiconductors 49 (2015) 899.

  • [35] Hussain A. Begum A. Rahman A. Mat. Sci. Semicon. Proc. 21 (2014) 74.

  • [36] Ullah S. Mollar M. Mari B. J. Solid State Electrochem. (2016).

  • [37] Toma O. Ion L. Iftimie S. Radu A. Antohe S. Mater. Design 100 (2016) 198.

  • [38] Ates A. Yildirim M.A. Kundakci M. Astam A. Mat. Sci. Semicon. Proc. 10 (2007) 281.

  • [39] Man M.T. Lee H.S. Curr. Appl. Phys. 15 (2015) 761.

  • [40] Darafarin S. Sahraei R. Daneshfar A. J. Alloy. Compd. 658 (2016) 780.

  • [41] Sahraei R. Mohammadi F. Soheyli E. Roushani M. J. Lumin. 187 (2017) 421.

  • [42] Sobhani A. Salavati Niasari M. Superlattice. Microst. 59 (2013) 1.

  • [43] Sarma M.P. Kalita J.M. Wary G. Mat. Sci. Semi-con. Proc. 61 (2017) 131.

  • [44] Sarma M.P. Kalita J.M. Wary G. Mater. Res. Express. 4 (2017) 45005.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 221 221 5
PDF Downloads 127 127 1