Influence of L-threonine on the growth, structural, optical, mechanical and nonlinear optical properties of tartaric acid single crystal

Open access

Abstract

Single crystals of pure and L-threonine added tartaric acid (LT/TA), organic nonlinear optical (NLO) materials were grown from their respective aqueous solution by slow evaporation method. The crystalline nature of the grown crystals was confirmed by powder X-ray diffraction analysis (XRD). UV-Vis-NIR absorption and transmission spectra revealed that the lower cut-off wavelength was around 281 nm and the crystals exhibited high transmission over visible and near IR region. The presence of the functional groups such as O–H, C–H, C–O, C=O in the grown crystals was confirmed by FT-IR analysis. CHN analysis was carried out to confirm the presence of L-threonine in the grown crystals. Microhardness study on the crystals revealed that the hardness number Hv increased with the applied load. The growth pattern of the crystals were analyzed through etching analysis from which the etch patterns in the shape of ‘step-triangle’ were observed. The second harmonic generation (SHG) properties of pure and L-threonine doped tartaric acid crystals were confirmed by Kurtz-Perry powder technique.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Martin Britto Dhass A. Suresh M. Bhagavannarayana G. Natarajan S. J. Cryst. Growth 309 (2007) 48.

  • [2] Mary Linet J. Jerome Das S. Mater. Chem. Phys. 126 (2011) 886.

  • [3] Moolya B.N. Dharmaprakash S.M. J. Cryst. Growth 290 (2006) 498.

  • [4] Gon H.B. J. Cryst. Growth 102(1990) 501.

  • [5] Ivanov N.R. Ferroelectrics Lett. 2 (1984) 45.

  • [6] Meng F.Q. Lu M.K. Chen J. Zhang S.J. Zeng H. Solid State Commun. 101 (1997) 925.

  • [7] Gu Y. Yang M. Cryst. Res. Technol. 43 (2008) 1331.

  • [8] Want B. Ahmad F. Kotru P.N. J. Cryst. Growth 299 (2007) 336.

  • [9] Parekh B.B. Joshi V.S. Pawar V. Thaker V.S. Joshi M.J. Cryst. Res. Technol. 44 (2009) 31.

  • [10] Arora S. Kkothari A. Amin B. Chudasama B. Cryst. Res. Technol. 42 (2007) 589.

  • [11] Bhat M.N. Dharmaprakash S.M. J. Cryst. Growth 243 (2002) 526.

  • [12] Kajzar F. Messier J. Cheml A. Zyss D.S. J. Nonlinear Optical Properties of Organic Molecules and Crystals Academic Press New York. 1987 51.

  • [13] Razzetti C. Ardoino M. Zanotti L. Zha M. Paorici C. Cryst. Res. Technol. 37 (2002) 456.

  • [14] Jaikumar D. Kalainathan S. Cryst. Res. Technol. 43 (2008) 565.

  • [15] Shoemaker D.P. Donohue J. Schomaker V. Corey R.B. J. Am. Chem. Soc. 72 (1950) 2328.

  • [16] Tigau N. Rusu G.I. Ciupina V. Prodan G. Vasile E. J. Optoelectron. Adv. M. 7 (2005) 727.

  • [17] Chawla A.K. Kaur D. Chandra R. Opt. Mater. 29 (2007) 995.

  • [18] Senthil Murugan G. Ramasamy P. AIP Conf. Proc. 1447 (2012) 511.

  • [19] Somasundari C.V. Arch. Phys. Res. 3 (2012) 283.

  • [20] Mott B.W. Micro-Indentation Hardness Testing Bulterworths London 1956 206.

  • [21] Lal B. Bamzai K.K. Kotru P.N. Wanklyn B.M. Mat. Chem. Phys. 85 (2004) 353.

  • [22] Sangwal K. Heimann R.B. Etching of Crystals: Theory Experiments and Applications North Holland Amsterdam 1987.

  • [23] Sangwal K. Owczarek I. J. Cryst. Growth 129 (1993) 640.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 328 306 14
PDF Downloads 287 269 27