Temperature dependence of the energy band gap of CuSi2P3 semiconductor using PSOPW method

Open access

Abstract

Theoretical formalism based on the orthogonalized plane wave method supplemented by a potential scaling scheme was used to predict the temperature dependence of energy gap of CuSi2P3 semiconductor. A computer code in Pascal was used to perform the variation of fundamental energy gap with temperature in the range of 150 K to 800 K. The dependence of energy gap on temperature for lattice dilation contribution, lattice vibration contribution and total temperature effect were performed separately. The results revealed that, as temperature increases, the top of the valence band and the bottom of the conduction band increase, while the energy band gap decreases. Generally, at low temperatures, the energy gap varies slowly and exhibits a nonlinear dependence and approaches linearity as temperature increases. The calculated energy gap of CuSi2P3 at T = 300 K is 0.4155 eV. The temperature coefficients in the linear region due to lattice dilation contribution, lattice vibration contribution and total temperature effect were calculated as –1.101 × 10−5 eV/K, –1.637 × 10−4 eV/K and –1.7523 × 10−4 eV/K, respectively. Also, the ratio of temperature coefficient of the energy gap due to LV contribution to its value and LD contribution in the linear region is equal to 14.868. That ratio is compared to those of CuGe2P3 and III-V compounds, where those of the latter show a systematic change with Eg. Moreover, the Eg of all the compounds shows a quadratic dependence on the inverse of mean bond length.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Wang P. Ahmadpour F. Kolodiazhnyi T. Kracher A. Cranswick L. Mozharivskyj Y. Dalton T. 39 (2010) 1105.

  • [2] Passler R. J. Appl. Phys. 89 (2001) 6235.

  • [3] Benkabou K. Aoumeur F.Z. Abid H. Amrane N. Physica B 337 (2003) 147.

  • [4] Morgan D.T. Proc. Int. Power Sources Symp. 76 (1986).

  • [5] Braun J.F. Hemler R.J. Proc. Symp. Space Nucl. Power Syst. 2 (1990) 794.

  • [6] Smith R.A. Semiconductor 2nd ed. Cambridge University Press Cambridge 2003.

  • [7] Folberth O.G. Pfister H. Acta Crystallogr. A 14 (1961) 325.

  • [8] Pamplin B.R. Omar M.S. Prog. Cryst. Growth Ch. 10 (1984) 183.

  • [9] Bhikshamaiah G. Omar M.S. Suryanarayana S.V. Cryst. Res. Technol. 29 (1994) 277.

  • [10] Omar M.S. Mater. Res. Bull. 42 (2007) 319.

  • [11] Omar M.S. J. Synth. Cryst. 27 (1998) 191.

  • [12] Bhikshamaiah G. Suryanarayana S.V. Omar M.S. Mater. Sci. Lett. 7 (1988) 1074.

  • [13] Sami S.A. Modification of OPW Method and Using it to calculate Temperature Dependence of the Energy Gap for some III-V Semiconductors Ph.D. Thesis Dohuk University Kurdistan Region Iraq 2004.

  • [14] Abdullah T.G. Temperature Dependence of Direct and Indirect Gaps of CuGe2P3 Semiconductor Ph.D. Thesis Salahaddin University-Erbil Kurdistan Region Iraq 2008.

  • [15] Abdullah T.G. Sol. Stat. Sci. Technol. 22 (2014) 55.

  • [16] Tsay Y.F. Gong B. Mitra S.S. Vetelino J.F. Phys. Rev. B 6 (1972) 2330.

  • [17] Olguin D. Cantarero A. Cardona M. Phys. Status Solidi B 220 (2000) 33.

  • [18] Herring C. Phys. Rev. 57 (1940) 1169.

  • [19] Powell J.L. Crasemann B. Quantum Mechanics Addison-Wesley Publishing Company Reading USA. 1965.

  • [20] Woodruff T.O. Phys. Rev. 103 (1956) 1159.

  • [21] Joshua S.J. Symmetry Principles and Magnetic Symmetry in Solid State Physics Adam Hilger-IOP Publishing Ltd. Bristol England 1991.

  • [22] Passler R. J. Appl. Phys. 88 (2000) 2570.

  • [23] Passler R. J. Appl. Phys. 90 (2001) 3956.

  • [24] Shay J.L. Phys. Rev. B 4 (1971) 1385.

  • [25] Auvergne D. Camassel J. Mathieu H. Car-Dona M. Phys. Rev. B 9 (1974) 5168.

  • [26] Camassel J. Auvergne D. Phys. Rev. B 12 (1975) 3258.

  • [27] Vetelino J.F. Gaur S.P. Mitra S.S. Phys. Rev. B 5 (1972) 2360.

  • [28] Pillai S.O. Solid State Physics 4th ed. New Age International (P) Ltd. Publishers New Delhi 2001.

  • [29] Seeger P.A. Daemen L.L. Appl. Phys. A 74 (2002) 1458.

  • [30] Colella R. Zhang Y. Sutter J.P. Ehrlich S.N. Phys. Rev. B 63 (2000) 14202.

  • [31] Omar M.S. Mater. Res. Bull. 47 (2012) 3518.

  • [32] Dash J.G. Rev. Mod. Phys. 71 (1999) 1737.

  • [33] Omar M.S. Ph.D. Thesis Bath Uni. England 1985.

  • [34] Omar M.S. J. Duhok Univ. 5 (2002) 123.

  • [35] Omar M.S. Mater. Res. Bull. 42 (2007) 961.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 268 250 13
PDF Downloads 540 525 61