Electrical and optical properties of new Pr3+-doped PbWO4 ceramics

Open access

Abstract

Polycrystalline samples of new scheelite-type tungstates, Pb1−3x xPr2xWO4 with 0.0098 ⩽ x ⩽ 0.20, where denotes cationic vacancies have been successfully prepared by a high-temperature solid-state reaction method using Pr2(WO4)3 and PbWO4 as the starting reactants. The influence of the Pr3+ substitution in the scheelite framework on the structure and optical properties of prepared new ceramic materials has been examined using powder X-ray diffraction method (XRD) and UV-Vis-NIR spectroscopy. The results of dielectric studies of Pb1−3x xPr2xWO4 samples showed both low values of dielectric constant (below 14) and loss tangent (below 0.2). The electrical conductivity and thermoelectric power measurements revealed a low conductivity (∼2 × 10−9 S/m) and the sign change of thermoelectric power around the temperature of 366 K suggesting the p-n transition. These results are discussed in the context of vacancy, acceptor and donor levels as well as the Maxwell-Wagner model.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Novotny R. Beck R. Döring W. Hejny V. Hofstaetter A. Korzhik M. Metag V. Römer K. Ströher H. Radiat. Meas. 33 (2001) 615.

  • [2] Kobayashi M. Ishii M. Usuki Y. Nucl. Instr. Meth. Phys. Res. A 406 (1998) 442.

  • [3] Feller R.P. Gendner N. Holm U. Johnson K.F. Meyer-Larsen A. Thies S. Nucl. Instr. Meth. Phys. Res. A 486 (2002) 785.

  • [4] Lecomte P. Luckey D. Nessi-Tedaldi F. Pauss F. Renker D. Nucl. Instr. Meth. Phys. Res. A 587 (2008) 266.

  • [5] Huhtinen M. Lecomte P. Luckey D. Nessitedaldi F. Pauss F. Nucl. Instr. Meth. Phys. Res. A 545 (2005) 63.

  • [6] Kobayashi M. Usuki Y. Ishii M. Yazawa T. Hara K. Tanaka M. Nikl M. Baccaro S. Cecilia A. Diemoz M. Dafinei I. Nucl. Instr. Meth. Phys. Res. A 404 (1998) 149.

  • [7] Lecoq P. Dafinei I. Auffray E. Schneegans M. Korzhik M.V. Missevitch O.V. Pavlenko V.B. Fedorov A.A. Annenkov A.N. Kostylev V.L. Ligun V.D. Nucl. Instr. Meth. Phys. Res. A 365 (1995) 291.

  • [8] Baccaro S. Borgia B. Cecilia A. Dafinei I. Diemoz M. Nikl M. Montecchi M. Radiat. Phys. Chem. 52 (1998) 635.

  • [9] Burachas S. Bodnar V. Borodenko Yu. Katrunov K. Martinov V. Nagornaya L. Ryzhikov V. Tamulaitis G. Gutbrod H. Manko V. J. Cryst. Growth 198/199 (1999) 881.

  • [10] Nessi-Tedaldi F. Nucl. Instr. Meth. Phys. Res. A 408 (1998) 266.

  • [11] Longo E. Nucl. Instr. Meth. Phys. Res. A 384 (1996) 225.

  • [12] Organtini G. Nucl. Phys. B 61B (1998) 59.

  • [13] Shimizu H. Sakamoto Y. Hashimoto T. Abe K. Asano Y. Kinashi T. Matsumoto T. Matsumura T. Okuno H. Yoshida H.Y. Nucl. Instr. Meth. Phys. Res. A 447 (200) 467.

  • [14] Cavallari F. Nucl. Phys. B 61B (1998) 449.

  • [15] Kozma P. Bajgar R. Kozma P. JR. Rad. Phys. Chem. 65 (2002) 127.

  • [16] Gong G. Shen D. Ren G. Zhang H. Yin Z. J. Cryst. Growth 235 (2002) 320.

  • [17] Moreau J.M. Gladyshevskii R.E. Galez P.H. Peigneux J.P. Korzhik M.V. J. Alloy. Compd. 284 (1999) 104.

  • [18] Huang Y. Feng X. Xu Z. Zhao G. Huang G. Li S. Solid State Commun. 127 (2003) 1.

  • [19] Chen W. Inagawa Y. Omatsu T. Tateda M. Takeuchi N. Usuki Y. Opt. Commun. 194 (2001) 401.

  • [20] Huang Y. Seo H.J. Feng Q. Yuan S. Mater. Sci. Eng. B-Adv 121 (2005) 103.

  • [21] Huang Y. Zhu W. Feng X. Liu Z. Man Z. Yin Z. Opt. Mat. 23 (2003) 443.

  • [22] Piątkowska M. Tomaszewicz E. J. Therm. Anal. Calorim. 126 (2016) 111.

  • [23] Nassau K. Levinstein H.J. Loiacono G.M. J. Phys. Chem. Solids 26 (1965) 1805.

  • [24] Taupin D. J. Appl. Crystallogr. 6 (1973) 380.

  • [25] Sawicki B. Groń T. Tomaszewicz E. Duda H. Górny K. Ceram. Int. 41 (2015) 13080.

  • [26] Urbanowicz P. Piątkowska M. Sawicki B. Gron T. Kukuła Z. Tomaszewicz E. J. Eur. Ceram. Soc. 35 (2015) 4189.

  • [27] Tauc J. Grigorovici R. Vancu A. Phys. Status Solidi 15 (1966) 627.

  • [28] Wood D.L. Tauc J. Phys. Rev. B. 5 (1972) 3144.

  • [29] Hippel Von A. Dielectrics and Waves Artech House London 1995 p.228.

  • [30] Kuang W. Nelson S.O. Trans. ASAE 41 (1998) 173.

  • [31] Frenkel J. Phys. Rev. 54 (1938) 647.

  • [32] Earnshaw A. Introduction to Magnetochemistry Academic Press London and New York 1968 p.29.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 523 523 9
PDF Downloads 280 280 7