Crystallization, habit modification and control of nucleation of glycine polymorphs from aqueous solutions doped with magnesium sulfate impurity

Abstract

The influence of magnesium sulfate as an additive in the nucleation of α and γ-polymorphs of glycine crystallized from aqueous solutions has been explored for the first time. Based on crystallization experiments, it was concluded that lower concentration of magnesium sulfate, say less than 2 g/mL, favors α-nucleation sites, whereas the optimized concentration of magnesium sulfate impurity to yield -nucleation sites is 2 g/mL and above. The nucleation time span (in days), solubility and pH were measured for α- and γ-nucleation sites in the aqueous solutions doped with magnesium sulfate. The glycine polymorphs α- and γ-single crystals were grown by slow solvent evaporation technique at ambient temperature. Crystal habit of glycine polymorphs was investigated and analyzed using goniometry. The unit cell dimensions and space group of the as-grown crystal were identified by single crystal XRD analysis. Both α- and γ-polymorphs of glycine were characterized structurally by powder XRD studies. The percentage of magnesium present in the grown glycine crystals was estimated by inductively coupled plasma optical emission spectrometry elemental analysis (ICP-OES). The nonlinear optical properties of the γ-glycine crystals were examined by Q-switched high energy Nd:YAG laser. The second harmonic generation output efficiency of the as-grown gamma glycine single crystals was computed to be 1.31 times superior than that of the reference material potassium dihydrogen phosphate (KDP).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Poornachary S.K., Chow P.S., Tan R.B., Cryst. Growth Des., 8 (2008), 179.

  • [2] Poornachary S.K., Chow P.S., Tan R.B., J. Cryst. Growth, 310 (2008), 3034.

  • [3] Litaka Y., Acta Crystallogr., 14 (1961), 1.

  • [4] Litaka Y., Proc. Japan Acad., 30 (1954), 109.

  • [5] Litaka Y., Acta Crystallogr., 11 (1958), 225.

  • [6] Litaka Y., Acta Crystallogr., 13 (1960), 35.

  • [7] Dawson A., Allan D.R., Belmonte S.A., Clark S.J., David W.I.F., Mc Gregor P.A., Parsons S., Pulham C.R., Sawyer L., Cryst. Growth Des., 5 (2005), 1415.

  • [8] Boldyreva E.V., Cryst. Eng., 6 (2003), 235.

  • [9] Marsh R.E., Acta Crystallogr., 11 (1958), 654.

  • [10] Dillip G.R., Raghavaiah P., Mallikarjuna K., Madhukar Reddy C., Bhagavannarayana G., Ramesh Kumar V., Deva Prasad Raju B., Spectrochim. Acta Part A, 79 (2011), 1123.

  • [11] Dillip G.R., Bhagavannarayana G., Raghavaiah P., Deva Prasad Raju B., Mater. Chem. Phys., 134 (2012), 371.

  • [12] Narayanbhat M., Dharmaprakash S.M., J. Cryst. Growth, 242 (2002), 245.

  • [13] Narayana Moolya B., Jayarama A., Suresh Kumar M.R., Dharmaprakash S.M., J. Cryst. Growth, 280 (2005), 581.

  • [14] Zulifiqar Ali Ahamed S.D., Dillip G.R., Raghavaiah P., Mallikarjuna K., Deva Prasad Raju B., Arab. J. Chem., 6 (2013), 429.

  • [15] Parimaladevi R., Sekar C., Spectrochim. Acta Part A, 76 (2010), 490.

  • [16] Anbuchudar Azhagan S., Ganesan S., Optik, 11 (2012), 993.

  • [17] Anbuchudar Azhagan S., Ganesan S., Optik, 6 (2013), 526.

  • [18] Anbuchudar Azhagan S., Ganesan S., Optik, 15 (2013), 2251.

  • [19] Anbu Chudar Azhagan S., Ganesan S., Optik, 20 (2013), 4452.

  • [20] Anbu Chudar Azhagan S., Ganesan S., Optik, 23 (2013), 6456.

  • [21] Anbuchudar Azhagan S., Ganesan S., IJPS, 8 (2013), 6.

  • [22] Srinivasan K., Renuga Devi K., Anbuchudar Azhagan S., Cryst. Res. Technol., 46 (2011), 159.

  • [23] Srinivasan K., J. Cryst. Growth, 311 (2008), 156.

  • [24] Srinivasan K., Arumugam J., Opt. Mater., 30 (2007), 40.

  • [25] Renuga Devi K., Srinivasan K., Cryst. Res. Technol., 50 (2015), 389.

  • [26] Balakrishnan T., Ramesh Babu R., Ramamurthi K., Spectrochim. Acta Part A, 69 (2008), 1114.

  • [27] Anbuchezhiyan M., Ponnusamy S., Singh S. P., Pal P.K., Datta P.K., Muthamizhchelvan C., Cryst. Res. Technol., 45 (2010), 497.

  • [28] Yogambal C., Ezhil Vizhi R., Rajan Babu D., Cryst. Res. Technol., 50 (2015), 22.

  • [29] Sekar C., Parimaladevi R., Spectrochim. Acta Part A, 74 (2009), 1160.

  • [30] Organic Index to the Powder Diffraction File, Joint committee of Powder Diffraction standards, 2002.

  • [31] Kurtz S.K., Perry T.T., J. Appl. Phys., 39 (1968), 3798.

  • [32] He G., Bhamidi V., Wilson S.R., Tan R.B.H., Kenis P.J.A., Zukoski C.F., Cryst. Growth Des., 6 (2006), 1746.

  • [33] Towler C.S., Davey R.J., Lancaster R.W., Price C.J., J. Am. Chem. Soc., 126 (2004), 13347.

  • [34] Li L., Lechuga-Ballesteros D., Szkudlarek B.A., Nair Rodriguez-Hornedo N., J. Colloid. Interf. Sci., 168 (1994), 8.

  • [35] Bisker-Leib V., Doherty M.F., Cryst. Growth Des., 3 (2002), 221.

OPEN ACCESS

Journal + Issues

Search