Synthesis and photoluminescence spectra of CdS and CdS/ZnO doped PVK nanocomposite films

Open access

Abstract

Organic/inorganic hybrid materials consisting of quantum dots and conjugate polymers are important for the application in light emitting devices. In the present work, we have studied the effect of CdS and CdS/ZnO nanoparticle addition on the structure and fluorescence properties of spin coated PVK (poly(N-vinyl carbozole)) nanocomposite films. CdS nanoparticles were synthesized by simple co-precipitation technique and ZnO shell was grown on the CdS nanoparticles by simple wet chemical approach. The nanoparticles and the hybrid nanocomposites have been characterized by using XRD, SEM, FT-IR, optical absorption and fluorescence spectroscopic techniques. The absorption peak for pure PVK remains at 345.5 nm accompanied with minor hump ~480 nm resulting from the incorporation of nanoparticles. It has been observed that the addition of nanoparticles to the hybrid material results in the enhancement of fluorescence intensity at 410 nm to 450 nm spectral regions. These results are important for the development of new light emitting devices at low fabrication costs.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Son D. Kim J. Park D. Choi W.K. Li F. Ham J.H. Kim T.W. Nanotechnology 19 (2008) 1.

  • [2] Hamed Z.B. Benchaabane A. Kouki F. Sanhoury M.A. Bouchriha H. Synthetic Met. 195 (2014) 102.

  • [3] Musa I. Massuyeau F. Faulques E. Nguyen T.P. Synthetic Met. 162 (19 – 20) (2012) 1756.

  • [4] Mastour N. Hamed Z.B. Benchaabane A. Sanhoury M.A. Kouki F. Org. Electron. 14 (2013) 2093.

  • [5] Kaur S. Kumar P. Thangaraj R. Polym. Bull. 70 (8) (2013) 2069.

  • [6] Zhang B. Liu L. Tan G. Yao B. Ho C. Wang S. Ding J. Xie Z. Wong W. Wang L. J. Mater. Chem. C 1 (2013) 4933.

  • [7] Zhu J. Ni H. Cheng J. Liu X. J. Mater. Sci.-Mater. El. 27 (2016) 2079.

  • [8] Zhang M. Zhang D. Jing F. IEEE Photonic Tech. L. 28 (15) (2016) 1677.

  • [9] Masala S. Bizzarro V. Re M. Nenna G. Villani F. Minarini C. Luccio T.D. Physica E 44 (7 – 8) (2012) 1272.

  • [10] Shamilov R.R. Nuzhdin V.I. Valeev V.F. Galyametdinov Y.G. Stepanov A.L. Appl. Spectrosc. 82 (5) (2015) 773.

  • [11] Nenna G. Masala S. Bizzarro V. Re M. Pesce E. Minarini C. Luccio T.D. J. Appl. Phys. 112 (2012) 044508.

  • [12] Yang C. L. Wang J. N. Ge W. K. Appl. Phys. Lett. 78 (2001) 760.

  • [13] Wang S. Yang S. Yang C. Li Z. Wang J. Ge W. J. Phys. Chem. B 104 (2000) 11853.

  • [14] Jiang D. Cao L. Liu W. Su G. Qu H. Sun Y. Dong B. Nanoscale Res. Lett. 4 (2009) 78.

  • [15] Milekhin A. Freidrich M. Zahn D.R.T. Sveshnikova L. Repinsky S. Appl. Phys. A-Mater. 69 (1999) 97.

  • [16] Selim K.M.K. Kang I.K. Guo H. Macromol. Res. 17 (6) (2009) 403.

  • [17] Kaur J. Kumar P. Sathiaraj T.S. Thangaraj R. Inter. Nano Lett. 3 (2013) 4.

  • [18] Khan Z.R. Zulfequar M. Khan M.S. Mater. Sci. Eng. B-Adv. 174 (2010) 145.

  • [19] Alias A.N. Zabidi Z.M. Harun M.K. Yahya M.Z.A. Ali A.M.M. Acta Phys. Pol. A 127 (4) (2015) 1430.

  • [20] Nam N.P.H. Cha S.W. Kim B.S. Choi S.H. Choi D.S. Jin J.I. Synthetic Met. 130 (2002) 271.

  • [21] Ye T. Chen J. Ma D. Phys. Chem. Chem. Phys. 12 (2010) 15410.

  • [22] Li L. Hu T. Yin C. Xie L. Yang Y. Wang C. Lin J. Yi M. Ye S. Huang W. Polym. Chem.-UK 6 (2015) 983.

  • [23] Rebarz M. Dalasinski P. Bala W. Lukasiak Z. Wujdyla M. Kreja L. Opt. Appl. 35 (3) (2005) 407.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 333 333 10
PDF Downloads 261 261 18