Characterization of mechanical properties of barium titanate ceramics with different grain sizes

Tomasz Trzepiecinski 1  and Magdalena Gromada 2
  • 1 Rzeszow University of Technology, Department of Materials Forming and Processing, Al. Powst. Warszawy 8, 35-959 , Rzeszów, Poland
  • 2 Institute of Power Engineering, Ceramic Department CEREL, ul. Techniczna 1, 36-040 , Boguchwała, Poland

Abstract

In this paper, three BaTiO3 powders of various particle size distributions were obtained as a result of mechanical activation in the mixer mill. Green barium titanate pellets and cylindrical specimens were fabricated by both uniaxial and isostatic pressing methods. As a result of the application of different maximal sintering temperatures, the obtained materials were characterized by various average grain sizes: 0.8 μm, 20 μm and 31.0 μm. The basic properties of sintered pellets and cylinders were determined and the influence of materials average grain size on their Young’s modulus and compressive strength were determined through compression tests in a uniaxial testing machine, Zwick/Roell Z100. The elastic properties were similar for tested materials with a different grain size. However, the microstructure of BaTiO3 strongly influenced the compressive strength.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] DENT A.C., BOWEN C.R., STEVENS R., CAIN M.G., STEWART M., J. Eur. Ceram. Soc., 27 (2007), 3739.

  • [2] SHIN Y.I., KANG K.M., JUNG Y.G., YEO J.G., LEE S.G., PAIK U., J. Eur. Ceram. Soc., 23 (2003), 1427.

  • [3] RYU S.S., KIM H.T., KIM H.J., KIM S., J. Ceram. Soc. Jpn., 117 (2009), 811.

  • [4] BLAMEY J.M., Investigation into the strength, toughness and porosity of barium titanate PTC ceramics, Durham University, Durham, 1990.

  • [5] LAZAREVI´C Z., ROMˇCEVI´C N., VIJATOVI´C M., PAUNOVI´C N., ROMˇC EVI´C M., STOJANOVI´C B., DOHˇCEVI´C -MITROVI´C Z., Acta Phys. Pol. A, 115 (2009), 808.

  • [6] ALMOND E.A., ROEBUCK B., GEE M.G., Inst. Phys. Conf. Ser., 75 (1986), 155.

  • [7] BLAMEY J.M., PARRY T.V., J. Mater. Sci., 28 (1993), 4988.

  • [8] CTIBOR P., SEINER H., SEDLACEK J., PALA Z., VANEK P., Ceram. Int., 39 (2013), 5039.

  • [9] ZHAO M.H., BONNELL D.A., VOHS J.M., Surf. Sci., 602 (2008), 2849.

  • [10] MICLEA C., T˘AN˘ASOIU C., SP˘ANULESCU I., MICLEA C.F., GHEORGHIU A., AMARANDE L., CIOANGHER M., MICLEA C.T., Rom. J. Inf. Sci. Tech., 10 (2007), 335.

  • [11] PRASAD V.C.S., KUMAR L.G.K., Ferroelectrics, 102 (1990), 141.

  • [12] ARLT G., PENSES H., Ferroelectrics, 48 (1983), 213.

  • [13] VIJATOVI´C M.M., BOBI´C J.D., STOJANOVI´C B.D., Sci. Sinter., 40 (2008), 155.

  • [14] GROMADA M., BIGLAR M., TRZEPIECI´NSKI T., STACHOWICZ F., B. Mater. Sci., 40 (2017), 759.

  • [15] DURAN P., GUTIERREZ D., TARTAJ J., MOURE C., Ceram. Int., 28 (2002), 283.

  • [16] UCHINO K., Advanced piezoelectric materials, science and technology, Woodhead Publishing, Duxford, 2017.

  • [17] Verband der Keramischen Industrie e.V., Brevier technical ceramics, Verlag Hans Fahner GmbH & Co. KG, Lauf, 2003.

  • [18] MITTAL J.P., KAUR I., SHARMA R.C., Encyclopedia of technical education - industrial engineering and materials, Mittal Publications, New Delhi, 1992.

  • [19] GOPALAKRISHNAN K., MECHOLSKY J.J., J. Eur. Ceram. Soc., 34 (2014), 3247.

OPEN ACCESS

Journal + Issues

Search