Determination of ionic conductivity in the Bi-Si-O and Pb-Si-O glasses

Open access

Abstract

Impedance spectroscopy measurements in various gas atmospheres were carried out in order to explain the doubts about the type of carriers and the mechanism of electrical conductivity in Bi-Si-O and Pb-Si-O glasses. In bismuth silicate glass, a typical ionic conductivity with oxygen ions as charge carriers was observed. The level of electrical conductivity of the glass at 400 °C was 5 × 10-8 S·cm-1, with the activation energy of 1.3 eV and was independent of measuring atmosphere. In the case of lead silicate glasses, the conductivity changed with measuring atmosphere. Two types of charge carriers: oxygen ions and proton ions were postulated. Proton conductivity measured in wet argon at temperature 400 °C was estimated at the level of 4 × 10-8 S·cm-1 while the oxygen ions conductivity in such conditions was 78 × 10-8 S·cm-1. We suggest that both types of charge carriers are transported along the same conduction paths using oxygen defects in the glass structure.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] KOHARA S. OHNO H. TAKATA M. USUKI T. MORITA H. SUZUYA K. AKOLA J. PUSZTAI L. Phys. Rev. B 82 (2010) 134209.

  • [2] WARREL C.A. HENSHALL T. J. Non-Cryst. Solids 29 (1978) 283.

  • [3] KUSZ B. TRZEBIATOWKI K. BARCZY´NSKI R.J. Solid State Ionics 159 (2003) 293.

  • [4] LIU L. Z. Phys. B 90 (1993) 393.

  • [5] WANG P.W. ZHANG L.P. J. Non-Cryst. Solids 194 (1996) 129.

  • [6] WITKOWSKA A. RYBICKI J. DI CICCO A. J. Non- Cryst. Solids 351 (2005) 380.

  • [7] KUSZ B. Optica Applicata 33 (2003) 141.

  • [8] GACKOWSKA J. GAZDA M. TRZEBIATOWSKI K. KUSZ B. J. Non-Cryst. Solids 354 (2008) 4319.

  • [9] ŁA˛CZKA M. STOCH L. GÓRECKI J. J. Alloys and Compounds 186 (1992) 279.

  • [10] STEPIEN R. PYSZ D. KUJAWA I. BUCZYNSKI R. Optical Materials 35 (2013) 1587.

  • [11] KUSZ B. TRZEBIATOWSKI K. GAZDA M. MURAWSKI L. J. Non-Cryst. Solids 319 (2003) 137.

  • [12] HUGHES K. ISARD J.O. MILNES G.C. Phys. Chem. Glasses 9 (1968) 43.

  • [13] STRAUSS S.W. MOORE D.G. HARRISON W.N. RICHARDS L.E. J. Res. Nat. Bur. Stand. 56 (1956) 135.

  • [14] MENDIRATTA S.K. Phys. Stat. Sol.(A) 93 (1986) 293.

  • [15] EL-BAYOUMI O.H. MACCRONE R.K. J. American Ceramic Society 59 (1976) 386.

  • [16] MILNES G.C. ISARD J.O. Phys. Chem. Glasses 3 (1962) 157.

  • [17] ABE Y. HOSONS H. HIKICHI Y. J. Materials Science Letters 9 (1990) 1443.

  • [18] PAVLOVA G.A. Izvest. Vysshykh Ucheb. Zavedenii Khim. i Khina. Teknol 5 (1958) 82.

  • [19] BOCHENTYN B. WARYCH A. SZREDER N. MIELEWCZYK-GRY´N A. KARCZEWSKI J. PRZE´S NIAK-WELENC M. GAZDA M. KUSZ B. J. Non-Cryst. Solids 439 (2016) 51.

  • [20] BOCHENTYN B. KARCZEWSKI J. MIRUSZEWSKI T. KUSZ B. J. Alloys and Compounds 646 (2015) 1124.

  • [21] KUSZ B. MIRUSZEWSKI T. BOCHENTYN B. ŁAPI´NSKI M. KARCZEWSKI J. J. Electron. Mater. 45 (2016) 1085.

  • [22] BOCHENTYN B. KARCZEWSKI J. MIRUSZEWSKI T. KUSZ B. Mat. Chem. Phys. 177 (2016) 353.

  • [23] BOCHENTYN B. KARCZEWSKI J. MIRUSZEWSKI T. KUSZ B. Mater. Res. Bull. 76 (2016) 195.

  • [24] ABE Y. TAKAHASI M. Chem. Phys. Lett. 411 (2005) 302.

  • [25] ABE Y. HOSONO H. OHTA Y. Phys. Rev. B 38 (1988) 10166.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 240 150 3
PDF Downloads 175 127 1