Multi-sided metallization of textile fibres by using magnetron system with grounded cathode

Open access

Abstract

The synthesis of coatings on textiles fibers enables functionalization of their properties e.g.: changing the reaction on IR radiation. In our experiment, a magnetron with a grounded cathode and positively biased anode was used as a source of plasma. A ring anode was positioned at 8 cm distance from the cathode. Samples of glass and cotton textile were placed at the plane of the anode. Ti and TiN coatings were deposited by sputtering of titanium target in Ar or Ar+ N2 atmosphere. SEM studies showed that, using the magnetron system described above, the textile fibers were covered by the 2 μm to 3 μm thick coatings. Unexpectedly, the coatings were deposited at both sides of the samples: the front side was exposed to glow discharge plasma and the backside was completely shaded from the plasma. IR optical investigation exhibited significant change in reflectance and transmittance of the coated textiles. The using of standard magnetron system (grounded anode and cathode at negative potential) resulted in a coating deposition at the textile side exposed to the plasma action only. We believe that the multi-sided deposition of coatings observed during the process run with magnetron with grounded cathode is a result of an ambipolar diffusion mechanism in the anodic potential drop region.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] KONCAR V. Smart Textiles and Their Applications Woodhead Publishing 2016.

  • [2] ROBERT S. ATHEY J.R. Coating Technologies Handbook 91 (2001) 687.

  • [3] MCCARTY C. MCQUAID M. Structure and Surface: Contemporary Japanese Textile Museum of Modern Art New York 1998.

  • [4] JIANG S. NEWTON E. YUEN C. KAN C. Text. Res. J. 76 (2006) 57.

  • [5] RAJA A. THILAGAVATHI G. KANNAIAN T. Indian J. Fibre Text. Res. 35 (2010) 59.

  • [6] SCHOLZ J. NOCKE G. HOLLSTEIN F. WEISSBACH A. Surf. Coat. Technol. 192 (2005) 252.

  • [7] DEPLA D. SEGERS S. LEROY W. VAN HOVE T. VAN PARYS M. Text. Res. J. 81 (2011) 1808.

  • [8] YIP J. JIANG S. WONG C. Surf. Coat. Technol. 204 (2009) 380.

  • [9] WEI Q. XIAO X. HOU D. Surf. Coat. Technol. 202 (2008) 2535.

  • [10] XU Y. WANG H. WEI Q. LIU H. DENG B. J. Coat. Technol. Res. 7 (2010) 637.

  • [11] CHODUN R. NOWAKOWSKA-LANGIER K. ZDUNEK K. OKRASA S. Nukleonika 61 (2016) 191.

  • [12] Gencoa Ltd. www.gencoa.com/balance_and_unbalance accessed in 2016.

  • [13] POSADOWSKI W.M. WIATROWSKI A. DORA J. RADZIMSKI Z.J. Thin Solid Films 516 (2008) 4478.

  • [14] DORA J. Polish Patent No. 313150 1996.

  • [15] PETRACONI G. MACIEL H. S. PESSOA R. S. MURAKAMI G. MASSI M. OTANI C. URUCHI W.M.I. SISMANOGLU B.N. Braz. J. Phys. 34 (4b) (2004) 1662.

  • [16] LEDERNEZ L. OLCAYTUG F. URBAN G. Contrib. Plasma Phys. 52 (4) (2012) 283.

  • [17] NUNEZ Y. WEMANS A. GORDO P. R. Vacuum 81 (11 - 12) (2007) 1511.

  • [18] ZIAJA J. OZIMEK M. KOPROWSKA J. EMC Europe 2009 Workshop (2009) 1.

  • [19] ZIAJA J. KOPROWSKA J. JANUKIEWICZ J. Fiber. Text. East. Eur. 16 (2008) 64.

  • [20] CHEN Y. CHIH HSU C LIANG HE J. Surf. Coat. Technol. 232 (2013) 868.

  • [21] CHEN Y. WU G. LIANG HE J. Mater. Sci. Eng. C 48 (2015) 41.

  • [22] LUNDIN D. LARSSON P. WALLIN E. LATTEMANN M. BRENNING N. HELMERSSON U. Plasma Sources Sci. Technol. 17 (2008) 035021.

  • [23] RAIZER Y.P. Gas Discharge Physics Springer Berlin 1991.

  • [24] LIEBERMAN M.A. LICHTENBERG A.J. Principles of Plasma Discharges and Materials Processing Wiley Hoboken 2005.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 233 153 12
PDF Downloads 161 125 1