Studies on rheological, structural, optical, electrical and surface properties of LiMn2O4 thin films by varied spin rates

Open access

Abstract

LiMn2O4 thin films prepared by cost-effective spin coating method using optimized coating conditions are reported. Spin rate was varied and spin rate dependent properties were studied. Prepared films were characterized for their structural, morphological and optical properties. X-ray diffraction study of LiMn2O4 thin films confirmed the cubic spinel structure with the preferred orientation along (1 1 1) plane. Optical absorption studies showed band gap energy of 3.02 eV for the grown LiMn2O4 films. FT-IR bands assigned to asymmetric stretching modes of MnO6 group were located around 623 cm-1 and 514 cm-1 for the LiMn2O4 thin films. The weak band observed at 437 cm-1 was attributed to the LiO4 tetrahedra. The films showed high conductivity value 0.79 S/cm indicating the generation of effective network of the film for enhanced charge transport. AFM micrographs of the LiMn2O4 films deposited at 3000 rpm and 3500 rpm showed uniform distribution of fine grains throughout the surface without any dark pits, pinholes and cracks.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] TANIGUCHI I. FUKUDA N. KONAROVA M. Adv. Powder Technol. 181 (2008) 228.

  • [2] YANG L. TAKAHASHI M. WANG B. Electrochim. Acta 51 (2006) 3228.

  • [3] CHEN C.C. CHIU K.-F. LIN K.M. LIN H.C. Thin Solid Film 517 (2009) 4192.

  • [4] MOON H.-S. LEE W. REUCROFT P.J. PARK J.-W. J. Power Sources 119 - 121 (2003) 710.

  • [5] DOI T. YAHIRO T. OKADA S. Electrochim. Acta 53 (2008) 8604.

  • [6] CHEN C.H. KELDER E.M. SCHOONMAN J. J. Power Sources 68 (1997) 377.

  • [7] SUBRAMANIA A. KARTHICK S.N. ANGAYARKANNI N. Thin Solid Films 516 (2008) 8295.

  • [8] IRIYAMA Y. TACHIBANA Y. SASASOKA R. KUWATA N. ABE T. INABA M. TASAKA A. KIKUCHI K. KAWAMURA J. OGUMI Z. J. Power Sources 174 (2007) 1057.

  • [9] WANG Y. CHEN W. LUO Q. XIE S. CHEN C.H. Appl. Surf. Sci. 252 (2006) 8096.

  • [10] TIAN L. YUAN A. J. Power Sources 192 (2009) 693.

  • [11] TAN C.L. ZHO U. LI W.S. HOU X.H. LU D.S. XU M.Q. HUNG Q.M. J. Power Sources 184 (2008) 408.

  • [12] PARK Y.J. KIM J.G. KIM M.K. CHUNG H.T. PARK Y. J. Power Sources 87 (2000) 69.

  • [13] JANG S.-W. LEE H.-Y. SHIN K.-C. LEE S.M. LEE J.-K. LEE S.-J. BAIK H.-K. RHEE D.-S. J. Power Sources 88 (2000) 274.

  • [14] SUN Y.-K. Solid State Ionics 100 (1997) 115.

  • [15] LIANG H. ZHAO X. YU Z. CAO M. LIU H. Solid State Ionics 192 (2011) 339.

  • [16] SHIH F.-Y. FUNG K.-Z. J. Power Sources 159 (2006) 179.

  • [17] SHIH F.-Y. FUNG K.-Z. J. Power Sources 158 (2006) 1370.

  • [18] CHIU K.F. LIN H.C. LIN K.M. CHEN C.C. J. Electrochem. Soc. 153 (10) (2006) 1992.

  • [19] KHATUN F. GAFU M.A. ALI M.S. ISLAM M.S. SARKER A.R. J. Sci. Res. 6 (2) (2014) 217.

  • [20] TSUJI T. NAGAO M. YAMAMURA Y. TAI N.T. Solid State Ionics 154 - 155 (2002) 381.

  • [21] BJORK H. GUSTAFSSON T. THOMAS J.O. Electrochemistry 3 (2001) 187.

  • [22] SARMA P.H. SUBRAMANIAN V. RANGARAJAN N. MURALI K.R. Bull. Mater. Sci. 18 (1995) 875.

  • [23] TANEMURA S. MIAO S. JIN P. KANEKO K. TERAI A. NABATOVA-GABAIN N. Appl. Surf. Sci. 654 (2003) 654.

  • [24] BOUWMAN P.J. BOUKAMP B.A. BOUWMEESTER H.J.M. RAMANA C.V. Solid State Ioninics 152 (2002) 181.

  • [25] NOURI J. KHOSHRAVESH T. KHANAHMADZADEH S. SALEHABADI A. ENHESSARI M. Int. J. Nano Dimens. 7 (1) (2016) 15.

  • [26] KALYANI P. KALAISELVI N. MUNIYANDI N. J. Power Sources 111 (2002) 232.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 251 127 2
PDF Downloads 157 91 2