Manufacturing of highly ordered porous anodic alumina with conical pore shape and tunable interpore distance in the range of 550 nm to 650 nm

Open access

Abstract

In this work, highly ordered porous anodic alumina (PAA) with tapered pore structure and interpore distance (Dc) in the range of 550 nm to 650 nm were fabricated. To produce hexagonal close-packed pore structure a two-step process, combining anodization in etidronic acid electrolyte in the first step and high-concentration, high-temperature anodization in citric acid electrolyte in the second step, was applied. The Al pre-patterned surface obtained in the first anodization was used to produce regular tapered pore arrays by subsequent and alternating anodization in 20 wt.% citric acid solution and pore wall etching in 10 wt.% phosphoric acid solution. The height of the tapered pores was ranging between 2.5 μm and 8.0 μm for the PAA with Dc = 550 nm and Dc = 650 nm, respectively. The geometry of the obtained graded structure can be used for a production of efficient antireflective coatings operating in IR spectral region.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] CHATTOPADHYAY S. HUANG Y.F. JEN Y.J. GANGULY A. CHEN K.H. CHEN L.C. Mater. Sci. Eng. R 69 (2010) 1.

  • [2] RAUT H.K. GANESH V.A. NAIR A.S. RAMAKRISHNA S. Energ. Environ. Sci. 4 (2011) 3779.

  • [3] HOBBS D.S. MACLEOD B.D. Proc. SPIE 5786 (2005) 349.

  • [4] FREY B. LEVITON D. MADISON T. Proc. SPIE 6273 (2006) 62732J.

  • [5] GULDIN S. KOHN P. STEFIK M. SONG J. DIVITINI G. ECARLA F. DUCATI C. WIESNER U. STEINER U. Nano Lett. 13 (2013) 5329.

  • [6] JOO W. KIM H.J. KIM J.K. Langmuir 26 (2010) 5110.

  • [7] CAMARGO K.C. MICHELS A.F. RODEMBUSCH F.S. HOROWITZ F. Chem. Commun. 48 (2012) 4992.

  • [8] YILDRIM A. KHUDIYEV T. DAGLAR B. BUDUNOGLU H. OKYAY A.K. BAYINDIR M. ACS Appl. Mater. Inter. 5 (2013) 853.

  • [9] YANAGISHITA T. NISHIO K. MASUDA H. Appl. Phys. Express 2 (2009) 022001.

  • [10] RAUT H.K. DINACHALI S.S. LOKE Y.C. GANESAN R. ANSAH-ANTWI K.K. GÓRA A. KHOO E.H. GANESH V.A. SAIFULLAH M.S.M. RAMAKRISHNA S. ACS Nano 9 (2015) 1305.

  • [11] RAUT H.K. DINACHALI S.S. HE A.Y. GANESH V.A. SAIFULLAH M.S.M. LAW J. RAMAKRISHNA S. Energ. Environ. Sci. 6 (2013) 1929.

  • [12] RAHMAN A. ASHRAF A. XIN H. TONG X. SUTTER P. EISAMAN M.D. BLACK C.T. Nat. Commun. 6 (2015) 5963.

  • [13] ASADOLLAHBAIK A. BODEN S.A. CHARLTON M.D.B. PAYNE D.N.R. COX S. BAGNALL D.M. Opt. Express 22 (2014) A402.

  • [14] CHEN J.Y. CHANG W.-L. HUANG C.K. SUN K.W. Opt. Express 19 (2011) 14411.

  • [15] RAGUIN D.H. MORRIS G.M. Appl. Opt. 32 (1993) 1154.

  • [16] SOUTHWELL W.H. J. Opt. Soc. Am. A 8 (1991) 549.

  • [17] GONZALEZ F.L. GORDON M.J. Opt. Express 22 (2014) 12808.

  • [18] LI J. ZHU J. GAO X. Small 10 (2014) 2578.

  • [19] CAI J. QI L. Mater. Horiz. 2 (2015) 37.

  • [20] LEE W. LEE J.-K. Adv. Mater. 14 (2002) 1187.

  • [21] LI J. LI C. GAO X. Appl. Surf. Sci. 257 (2011) 10390.

  • [22] LI C. LI J. CHEN C. ZHU J. GAO X. Chem. Commun. 48 (2012) 5100.

  • [23] LI J. LI C. CHEN C. HAO Q. WANG Z. ZHU J. GAO X. ACS Appl. Mater. Inter. 4 (2012) 5678.

  • [24] SUN B. LI J. JIN X. ZHOU C. HAO Q. GAO X. Electrochim. Acta 112 (2013) 327.

  • [25] CHOI K. PARK S.H. SONG Y.M. LEE Y.T. HWANGBO C.K. YANG H. LEE H.S. Adv. Mater. 22 (2010) 3713.

  • [26] CHOI K. PARK S.H. SONG Y.M. CHOC C. LEE H.S. J. Mater. Chem. 22 (2012) 17037.

  • [27] KIKUCHI T. NISHINAGA O. NATSUI S. SUZUKI R.O. Electrochim. Acta 156 (2015) 235.

  • [28] TAKENAGA A. KIKUCHI T. NATSUI S. SUZUKI R.O. ECS Solid State Lett. 4 (2015) P55.

  • [29] KIKUCHI T. NISHINAGA O. NATSUI S. SUZUKI R.O. Appl. Surf. Sci. 34 (2015) 119.

  • [30] KIKUCHI T. NAKAJIMA D. NISHINAGA O. NATSUI S. SUZUKI R.O. Curr. Nanosci. 11 (2015) 560.

  • [31] HORCAS I. FERNANDEZ R. GOMEZ-RODRIGUEZ J.M. COLCHERO J. GOMEZ-HERRERO J. BARO A.M. Rev. Sci. Instrum. 78 (2007) 013705.

  • [32] STE˛PNIOWSKI W.J. NOWAK-STE˛PNIOWSKA A. BOJAR Z. Mater. Charact. 78 (2013) 79.

  • [33] STE˛PNIOWSKI W.J. BOJAR Z. Surf. Coat. Tech. 206 (2011) 265.

  • [34] STE˛PNIOWSKI W.J. ZASADA D. BOJAR Z. Surf. Coat. Tech. 206 (2011) 1416.

  • [35] SU Z. ZHOU W. JIANGA F. HONG M. J. Mater. Chem. 22 (2012) 535.

  • [36] KELLER F. HUNTER M.S. ROBINSON D.L. J. Electrochem. Soc. 100 (1953) 411.

  • [37] EBIHARA K. TAKAHASHI H. NAGAYAMA M. J. Met. Finish. Soc. Jpn. 34 (1983) 548.

  • [38] PARKHUTIK W.P. SHERSHULSKY V.I. J. Phys. D Appl. Phys. 25 (1992) 1258.

  • [39] LI F.Y. ZHANG L. METZGER R.M. Chem. Mater. 10 (1998) 2470.

  • [40] HAN X.Y. SHEN W.Z. J. Electroanal. Chem. 655 (2011) 56.

  • [41] NOREK M. DOPIERAŁA M. STE˛PNIOWSKI W.J. J. Electroanal. Chem. 750 (2015) 79.

  • [42] CHEN S.H. CHAN D.-S. CHEN C.-K. CHANG T.-H. LAI Y.-H. LEE C.-C. Jpn. J. Appl. Phys. 49 (2010) 015201.

  • [43] WANG Q. LONG Y. SUN B. J. Porous Mat. 20 (2013) 785.

  • [44] BELLEMARE J. SIROIS F. MÉNARD D. J. Electrochem. Soc. 161 (2014) E75.

  • [45] CHEN X. YU D. CAO L. ZHU X. SONG Y. HUANG H. LU L. CHEN X. Mater. Res. Bull. 57 (2014) 116.

  • [46] COZ LE F. ARURAULT L. DATAS L. Mater. Charact. 61 (2010) 283.

  • [47] WADA K. SHIMOHIRA T. YAMADA M. BABA N. J. Mater. Sci. 21 (1986) 3810.

  • [48] BURGHOORN M. ROOSEN-MELSEN D. RIET DE J. SABIK S. VROON Z. YAKIMETS I. BUSKENS P. Materials 6 (2013) 3710.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 532 338 22
PDF Downloads 188 115 5