Structure and thermal expansion of liquid bismuth

Open access

Abstract

Experimental structural data for liquid Bi were used for estimation of the main structure parameters as well as the thermal expansion coefficient both in supercooled and superheated temperature ranges. It was shown that the equilibrium melt had a positive thermal expansion coefficient within a temperature range upon melting and a negative one at higher temperatures. The former was related to structure changes upon melting, whereas the latter with topologic disordering upon further heating. It was found that the superheated melt had a negative thermal expansion coefficient. The results obtained from structural data were compared with the thermal expansion coefficient calculated from the data of density for liquid Bi.

[1] In-Kook Suh, Ohta H., Waseda Y., J. Mater. Sci., 23 (1988), 757.

[2] Ocken H., Wagner C.N. I., Phys. Rev., 1 (1966), 122.

[3] Bar’Yakhtar V. Mikhailova L.E., Il’Inskii A.G., Romanova A.V., Khristenko T.M., JETP, 68 (5) (1989), 811.

[4] Hongbo L., Wang X., Cao Q., Zhang D., Zhang J., Hu T., Mao H.-K., Jiang J.-Z., PNAS, 110 (25) (2013), 10068.

[5] Crichton W.A., Mezouar M., Grande T., Stolen S., Grzechnik A., Nature, 414 (2001), 622.

[6] McMillan P.F., Nat. Mater., 1 (2002), 19.

[7] Yargerand J.L., Wolf G.H., Science, 306 (2004), 206.

[8] Wilding M.C., Wilson M., McMillan P.F., Chem. Soc. Rev., 35 (2006), 964.

[9] McMillan P.F., Wilson M., Wilding M.C., Daisenberger D., Mezouar M., Greaves N.G., J. Phys.-Condens. Mat., 19 (2007), 415101.

[10] Cadien A., Hu Q., Meng Y., Cheng Y., Chen M., Shu J., Mao H., Sheng H., Phys. Rev. Lett., 110 (2013), 125503.

[11] Barrett C.S., Aust. J. Phys., 13 (1960), 209.

[12] Greenberg Y., Yahel E., Caspi E.N., Benmore C., Beuneu B., Dariel M.P., Makov G., EPL 86 (2009), 36004.

[13] Souto J., Alemany M., Gallego L., Gonzalez L., Gonzalez D., Phys. Rev. B, 81 (2010), 134201.

[14] Richter H., Breitling G., Adv. Phys., 16 (1968), 293.

[15] Orton Z.B.R., Z. Naturforsch. A, 34 (1979), 1547.

[16] Krebs H., J. Non-Cryst. Solids, 1 (1969), 455.

[17] Davidovic M., Stojic M., Jovic D.J., J. Phys. C-Solid State Phys., 16 (1983), 2053.

[18] Davidovic M., Stojic M., Jovic D.J., J. Non-Cryst. Solids, 61 – 62 (1984), 517.

[19] Bellissent-Funel M.C., Bellisent R., J. Non-Cryst. Solids, 65 (1984), 383.

[20] Matsuno N., Kamiyama H., Ishii Y., Momiuchi M., Jpn. J. Appl. Phys., 25 (1986), 275.

[21] Momiuchi M., J. Phys. Soc. Jpn., 55 (1986), 200.

[22] Emuna M., Mayo M., Greenberg Y., Caspi E.N., Beuneu B., Yahel E., Makov G., J. Chem. Phys., 140 (2014), 094502.

[23] Haoran G., Chunjing S., Rui W., Xiaogang Q.I., Ning Z., Chinese Sci. Bull., 15 (2007), 2031.

[24] Cromer D.T., Waber J.T., Acta Crystallogr., 18 (1965), 104.

[25] Kroghmoe J., Acta Crystallogr., 9 (1956), 951.

[26] Plevachuk Y., Sklyarchuk V., Yakymovych A., Shtablavyi I., Methods and facilities for thermophysical and structure investigations of liquid metallic alloys, in: 6th International Conference Electromagnetic Processing of Materials, Forschungszentrum, Dresden-Rossendorf-Dresden, 2009, p. 415.

[27] Mayo M., Yahel E., Greenberg Y., Caspi E.N., Beuneu B., Makov G., J. Appl. Crystallogr., 46 (2013), 1582.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 80 22
PDF Downloads 19 19 7