Investigation on photoluminescence quenching of CdSe/ZnS quantum dots by organic charge transporting materials

Open access

Abstract

The effect of different organic charge transporting materials on the photoluminescence of CdSe/ZnS core/shell quantum dots has been studied by means of steady-state and time-resolved photoluminescence spectroscopy. With an increase in concentration of the organic charge transporting material in the quantum dots solutions, the photoluminescence intensity of CdSe/ZnS quantum dots was quenched greatly and the fluorescence lifetime was shortened gradually. The quenching efficiency of CdSe/ZnS core/shell quantum dots decreased with increasing the oxidation potential of organic charge transporting materials. Based on the analysis, two pathways in the photoluminescence quenching process have been defined: static quenching and dynamic quenching. The dynamic quenching is correlated with hole transporting from quantum dots to the charge transporting materials.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Colvin V.L. Schlamp M.C. Alivisatos A.P. Nature 370 (1994) 354.

  • [2] Rauf S. Glidle A. Cooper J.M. Langmuir 26 (2010) 16934.

  • [3] Huynh W.U. Dittmer J.J. Alivisatos A.P. Science 295 (2002) 2425.

  • [4] Song J.G. Song X. Ling T. Du X.W. Qiao S.Z. Ind. Eng. Chem. Res. 51 (2012) 10074.

  • [5] Sun Q.J. Wang Y.A. Li L.S. Wang D.Y. Zhu Y. Xu J. Yang C.H. Li Y.F. Nat. Photo 1 (2007) 717.

  • [6] Coe S. Woo W.K. Bawendi M.G. Bulovic V. Nature 420 (2002) 800.

  • [7] Peng X.G. Schlamp M.C. Kadavanich A.V. Alivisatos A.P. J. Am. Chem. Soc. 119 (1997) 7019.

  • [8] Hines M.A. Guyot-Sionnest P. J. Phys. Chem. B 100 (1996) 468.

  • [9] Zhao J.L. Bardecker J.A. Munro A.M. Liu M.S. Niu Y.H. Ding I.K. Luo J.D. Chen B.Q. Jen A.K.Y. Ginger D.S. Nano. Lett. 6 (2006) 463.

  • [10] Landes C.F. Braun M. El-Sayed M.A. J. Phys. Chem. B 105 (2001) 10554.

  • [11] Xie R.G. Kolb U. Li J.X. Basche T. Mews A. J. Am. Chem. Soc. 127 (2005) 7480.

  • [12] Bebelaar D. Rev. Sci. Instrum. 57 (1986) 1116.

  • [13] Dabbousi B.O. Rodriguez-Viejo J. Mikulec F.V. Heine J.R. Mattoussi H. Ober R. Jensen K.F. Bawendi M.G. J. Phys. Chem. B 101 (1997) 9463.

  • [14] Califano M. Franceschetti A. Zunger A. Nano Lett. 5 (2005) 2360.

  • [15] Müller J. Lupton J.M. Rogach A.L. Feldmann J. Talapin D.V. Weller H. Phys. Rev. Lett. 93 (2004) 167402.

  • [16] Hagfeldt A. Gratzel M. Chem. Rev. 95 (1995) 49.

  • [17] Sykora M. Petruska M.A. Alstrum-Acevedo J. Bazel I. Meyer T.J. Klimov V.I. J. Am. Chem. Soc. 128 (2006) 9984.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1341 854 8
PDF Downloads 1559 969 5