Structure of AlN films deposited by magnetron sputtering method

Open access

Abstract

AlN films on a Si substrate were synthesized by magnetron sputtering method. A dual magnetron system operating in AC mode was used in the experiment. Processes of synthesis were carried out in the atmosphere of a mixture of Ar/N2. Morphology and phase structure of the AlN films were investigated at different pressures. Structural characterizations were performed by means of SEM and X-ray diffraction methods. Our results show that the use of magnetron sputtering method in a dual magnetron sputtering system is an effective way to produce AlN layers which are characterized by a good adhesion to the silicon substrate. The morphology of the films is strongly dependent on the Ar/N2 gas mixture pressure. An increase of the mixture pressure is accompanied by a columnar growth of the layers. The films obtained at the pressure below 1 Pa are characterized by finer and compacter structure. The AlN films are characterized by a polycrystalline hexagonal (wurtzite) structure in which the crystallographic orientation depends on the gas mixture pressure.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] KAR J.P. BOSE G. TULI S. Vacuum 81 (4) (2006) 494.

  • [2] CHIU K.H. CHEN J.H. CHEN H.R. HUANG R.S. Thin Solid Films 515 (2007) 4819.

  • [3] OLIVARES J. RIVERA J. BRIONES A. Diam. Relat. Mater. 16 (2007) 1421.

  • [4] JANG K. LEE K. KIM J. HWANG S. LEE J. DHUNGEL S.K. JUNG S. YI J. Mat. Sci. Semicon. Proc. 9 (2006) 1137.

  • [5] PRINZ G.M. LADENBURGER A. FENEBERG M. SCHIRRA M. THAPA S.B. BICKERMANN M. EPELBAUM B.M. SCHOLZ F. THONKE K. SAUER R. Superlattice. Microst. 40 (2006) 513.

  • [6] DUBOIS M.A. MURALT P. Appl. Phys. Lett. 74 (1999) 3032.

  • [7] LOEBL H.P. KLEE M. METZMACHER C. BRAND W. MILSOM R. LOK P. Mater. Chem. Phys. 79 (2003) 143.

  • [8] DIMITROVAV. MANOVA D. PASKOVA T. UZUNOV T. IVANOV N. DECHEV D. Vacuum 51 (1998) 161.

  • [9] MANOVA D. DIMITROVA V. FUKAREK W. KARPUZOV D. Surf. Coat. Tech. 106 (1998) 205.

  • [10] STEVENS K.S. OHTANI A. KINNIBURGH M. BERESFORD R. Appl. Phys. Lett. 65 (1994) 321.

  • [11] YOSHIDA S. MISAWA S. FUJII Y. TAKADA S. HATAKAWA H. GONDA S. ITOH A. J. Vac. Sci. Technol. 16 (1979) 990.

  • [12] OKAMOTO M. YAMAOKA M. YAP Y.K. YOSHIMURA M. MORI Y. SASAKI T. Diam. Relat. Mater. 9 (2000) 516.

  • [13] NORTON M.G. KOTULA P.G. CARTER C.B. J. Appl. Phys. 70 (1991) 2671.

  • [14] VISPUTE R. Thin Solid Films 299 (1997) 94.

  • [15] OKANO H. TAKAHASHI Y. TANAKA T. SHIBATA K. NAKANO S. Jpn. J. Appl. Phys. 31 (1992) 3446.

  • [16] CHENG C.C. CHEN Y.C. WANG H.J. CHEN W.R. J. Vac. Sci. Technol. A 14 (1996) 2238.

  • [17] NAIK R.S. REIF R. LUTSKY J.J. SODINI C.G. J. Electrochem. Soc. 146 (1999) 691.

  • [18] OHUCHI S. RUSSEL P.E. J. Vac. Sci. Technol. A 5 (1987) 1630.

  • [19] HWANG B.-H. CHEN C.-S. LU H.-Y. HSU T.-C. Mat. Sci. Eng. A-Struct. 325 (2002) 380.

  • [20] KAMOHARA T. AKIYAMA M. UENO N. NONAKA K. TATEYAMA H. J. Cryst. Growth 275 (2005) 383.

  • [21] POSADOWSKI W. WIATROWSKI A. DORA J. RADZI´NSKI Z. Thin Solid Films 516 (14) (2008) 4478.

  • [22] BAIL LE A. DUROY H. FOURQUET J.L. Mat. Res. Bull. 23 (1988) 447.

  • [23] RODRIGUEZ-CARVAJAL J. Comm. Powder Diffr. Newsl. 26 (2001) 12.

  • [24] THORNTON J.A. J. Vac. Sci. Technol. 4 (1974) 666.

  • [25] GOLDBERG Y. Aluminum Nitride (AlN) in: LEVINSHTEIN M.E. RUMYANTSEV S.L. SHUR M.S. (Eds.) Properties of Advanced Semiconductor Materials GaN AlN InN BN SiC SiGe John Wiley & Sons Inc. New York 2001.

  • [26] PASZKOWICZ W. PODSIADLO S. MINIKAYEV R. J. Alloy. Compd. 382 (2004) 100.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0,918
5-year IMPACT FACTOR: 0,916



CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 349 216 12
PDF Downloads 116 89 4