Temperature dependence of stress in CVD diamond films studied by Raman spectroscopy

Open access

Abstract

Evolution of residual stress and its components with increasing temperature in chemical vapor deposited (CVD) diamond films has a crucial impact on their high temperature applications. In this work we investigated temperature dependence of stress in CVD diamond film deposited on Si(100) substrate in the temperature range of 30 °C to 480 °C by Raman mapping measurement. Raman shift of the characteristic diamond band peaked at 1332 cm-1 was studied to evaluate the residual stress distribution at the diamond surface. A new approach was applied to calculate thermal stress evolution with increasing tempera­ture by using two commonly known equations. Comparison of the residts obtained from the two methods was presented. The intrinsic stress component was calculated from the difference between average values of residual and thermal stress and then its temperature dependence was discussed.

[1] SATO H., KASU M., Diam. Relat. Mater., 24 (2012), 99.

[2] DENISENKO A., KOHN E., Diam. Relat. Mater., 14 (2005), 491.

[3] TORZ-PIOTROWSKA R., FABISIAK K., PAPROCKI K., SZYBOWICZ M., STARYGA E., BANASZAK A., J. Phys. Chem. Solids, 72 (2011), 1225.

[4] MOSIŃSKA L., FABISIAK K., PAPOCKI K., KOWALSKA M., POPIELARSKI P., SZYBOWICZ M., Electrochim. Acta, 104 (2013), 481.

[5] FAN Q.H., GRACIO J., PEREIRA E., Diam. Relat. Mater., 9 (2000), 1739.

[6] WINDISCHMANN H., GRAY K.J., Diam. Relat. Mater., 4 (1995), 837.

[7] FABISIAK K., TORZ-PIOTROWSKA R., STARYGA E., SZYBOWICZ M., PAPROCKI K., BANASZAK A., POPIELARSKI P., Mater. Sci. Eng. B-Adv., 177 (2012), 1352.

[8] KGHT D.S., WHITE W.B., J. Mater. Res., 4 (2) (1989), 385.

[9] AGER J.W., DRORY M.D., Phys. Rev. B, 48 (1993), 2601.

[10] WOEHRL, N., HIRTE T., POSTH O., BUCK V., Diam. Relat. Mater., 18 (2009), 224.

[11] LISCIA DI E.J., ´A LVAREZ F., BURGOS E., HALAC E.B., REINOSO M., Mater. Sci. Appl., 4 (2013), 191.

[12] GUILLEMENT T., XIE Z.Q., ZHOU Y.S., PARK J.B., VEILLERE A., XIONG W., HEINTZ J.M., SILVAIN J.F., CHANDRA N., LU Y.F., ACS Appl. Mater. Inter., 3 (2011), 4120.

[13] RALCHENKO V.G., SMOLIN A.A., PEREVERZEV V.G., OBRAZTSOVA E.D., KOROTOUSHENKO K.G., Diam. Relat. Mater., 4 (1995), 754.

[14] KLEMENS P.G., Phys. Rev., 148 (1996), 845.

[15] JEONG J.H., LEE S.Y., LEE W.S., BAIK Y.J., KWON D., Diam. Relat. Mater., 11 (2002), 1597.

[16] BRANDES E.A., Smithells Metals Reference Book, 6th Edition, London, 1983.

[17] SLACK G.A., BARTMAN S.F., J. Appl. Phys., 46 (1975) 89.

[18] XU F., ZUO D., LU W., WANG M., ZHANG H., Key Eng. Mat., 375 - 376 (2008), 123.

[19] LIU C., TANG D., Adv. Mat. Res., 139 - 141 (2010), 456.

[20] LIU Z., CHEN L., LIY C., HEI L., SONG J., CHEN G., TANG W., LV F., J. Mater. Sci. Technol., 26 (11) (2010), 991.

[21] WOEHRL N., BUCK V., Diam. Relat. Mater., 16 (4 - 7) (2007), 748.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 148 5
PDF Downloads 65 65 6