Structural and optical properties of pure and Ag doped ZnO thin films obtained by sol gel spin coating technique

Open access

Abstract

We have investigated the influence of Ag doping on zinc oxide thin films. Pure and Ag doped, preferentially oriented transparent zinc oxide thin films were prepared by sol gel technique on a glass substrate using diethyl amine as a stabilizer. The X-ray diffraction analysis revealed that the films with hexagonal wurtzite type structure were polycrystalline in nature with a preferred grain orientation in the 101 direction. The crystallite sizes decreased from 34 nm to 27 nm after silver doping. Both photoluminescence and optical transmission measurements showed that the band gap increased after the Ag doping. The structure and optical characterization studies clearly indicated the incorporation of Ag in ZnO. Hence, the observed increase in the optical band gap and decrease in crystallite size can be directly attributed to the effect of Ag ion incorporation into the ZnO lattice.

[1] KLINGSHIRN C., Phys. Status Solidi B, 71 (1975), 547.

[2] TANG Z.K., WONG G.K.L., YU P., KAWASAKI M., OHTOMO A., KOINUMA H., SEGAWA Y., Appl. Phys. Lett., 72 (1998), 3270.

[3] ZHANG T.C., MEI Z.X., GUO Y., XUE Q.K., DU X.L., J. Phys. D Appl. Phys., 42 (2009), 065303.

[4] SEOW Z.L.S., WONG W.A.S., THAVASI V., JOSE R., RAMAKRISHNA S., HO G.W., Nanotechnology, 20 (2009), 045604.

[5] GUPTA T.K., J. Am. Ceram. Soc., 73 (1990), 1817.

[6] SAITO S., MIYAYAMA M., KOUMOT K., YANAGIDA H., J. Am. Ceram. Soc., 68 (1985), 40.

[7] LI Y.B., BANDO Y., GOLBERG D., Appl. Phys. Lett., 84 (2004) 3603.

[8] CHOOPUN S., TUBTIMTAE A., SANTHAVEESUK T., NILPHAI S., WONGRAT E., HONGSITH N., Appl. Surf. Sci., 256 (2009), 998.

[9] QUARANTA F., VALENTINI A., RIZZI F.R., J. Appl. Phys., 74 (1993), 247.

[10] CRACIUM V., ELDERS J., GARDENIERS J.G.E., Appl. Phys. Lett., 65 (1994), 2963.

[11] ONG C.K., WANG S.J., Appl. Surf. Sci., 185 (2001), 47.

[12] KUROYANAGI A., Jpn. J. Appl. Phys., 28 (1989), 219.

[13] NATSUME Y., SAKATA H., HIRAYAMA T., YANAGIDA H., J. Appl. Phys., 72 (9) (1992), 4203.

[14] FIDDES A.J.C., DUROSE K., BRINKMAN A.W., J. Cryst. Growth, 159 (1996), 210.

[15] KAVAK H., TUZEMEN E.S., OZBAYRAKTAR L.N., ESEN R., Vacuum, 83 (2009), 540.

[16] OHYAMA M., KOZUKA H., YOKO T., Thin Solid Films, 306 (1997), 78.

[17] BAO D., GU H., KUANG A., Thin Solid Films, 312 (1998), 37.

[18] HAN H.C., KIM I.J., TAI W.P., KIM J.K., SHIM M.S., SUH S.J., KIM Y.S., J. Korean Ceram. Soc., 40 (2003), 1113.

[19] KIM I.J., HAN H.C., LEE C.S., SONG Y.J., TAI W.P., SUH S.J., KIM Y.S., J. Korean Ceram. Soc., 41 (2004), 136.

[20] WANG Y., CHU B., Superlattice. Microst., 44 (2008), 54.

[21] HENGLEIN A., J. Phys. Chem., 97 (1993), 5457.

[22] RANI S., SURI P., SHISHODIA P.K., MEHRA R.M., Sol. Energ. Mat. Sol. C., 92 (2008), 1639.

[23] WANG X.S., WU Z.C., WEBB J.F., LIU Z.G., Appl. Phys. A-Mater., 77 (2003), 561.

[24] EL-KADRY N., ASHOUR A., MAHMOUD S.A., Thin Solid Films, 269 (1995), 112.

[25] BARRET C.S., MASSALSKI T.B., Structure of Metals, Pergamon Press, Oxford, 1980.

[26] BAHSI Z.B, ORAL A.Y., Opt. Mater., 29 (2007), 672.

[27] NISHINO J., OHSHIO S., KAMATA K., J. Am. Ceram. Soc., 75 (1992), 3469.

[28] SERPONE N., LAWLESS D., KHAIRUTDINOV R., J. Phys. Chem., 99 (1995), 16646.

[29] SERNELIUS B.E., BERGGREN K.F., JIM Z.C., HAMBERG I., GRANQVIST C.G., Phys. Rev. B, 37 (1988), 10244.

[30] WU Q.H., SONG J., KANG J., DONG Q.F., WU S.T., SUN S.G., Mater. Lett., 61 (2007), 3679.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 247 37
PDF Downloads 75 75 17