CVD carbon powders modified by ball milling

Open access

Abstract

Carbon powders produced using a plasma assisted chemical vapor deposition (CVD) methods are an interesting subject of research. One of the most interesting methods of synthesizing these powders is using radio frequency plasma. This method, originally used in deposition of carbon films containing different sp2/sp3 ratios, also makes possible to produce carbon structures in the form of powder. Results of research related to the mechanical modification of these powders have been presented. The powders were modified using a planetary ball mill with varying parameters, such as milling speed, time, ball/powder mass ratio and additional liquids. Changes in morphology and particle sizes were measured using scanning electron microscopy and dynamic light scattering. Phase composition was analyzed using Raman spectroscopy. The influence of individual parameters on the modification outcome was estimated using statistical method. The research proved that the size of obtained powders is mostly influenced by the milling speed and the amount of balls. Powders tend to form conglomerates sized up to hundreds of micrometers. Additionally, it is possible to obtain nanopowders with the size around 100 nm. Furthermore, application of additional liquid, i.e. water in the process reduces the graphitization of the powder, which takes place during dry milling.

[1] EWSUK K.G., GOGOTSI Y., Ceram. Trans., 190 (2006), 238.

[2] SHENDEROVA O., GRUEN D., Ultrananocrystalline Diamond: Synthesis, Properties and Applications, William-Andrew Publisher, New York, 2006.

[3] MITURA K., KARCZEMSKA A., NIEDZIELSKI P., GRABARCZYK J., KACZOROWSKI W., LOUDA P., MITURA S., Int. J. Nanomanuf., 2 (2008), 29.

[4] PUZYR A.P., NESHUMAYEV D.A., BONDAR V.S., DOLMATOV V.YU., SHUGALEI I.V., DUBYAGO N.P., TARSKIKH S.V., MAKARSKAYA G.V., The Influence of Detonation Nanodiamond Powder on Blood Cells, in: LEE J., NOVIKOV N. (Eds.), Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing, Springer, 2005, p.155.

[5] SRIVASTAVA S.K., VANKAR V.D., KUMAR V., Thin Solid Films, 515 (2006), 1552.

[6] AHMAD B., RIAZ M., AHMAD M., NAWAZ S., AHMAD S., Mater. Lett., 62 (2008), 3367.

[7] SOLARSKA K., GAJEWSKA A., KACZOROWSKI W., BARTOSZ G., MITURA K., Diam. Relat. Mater., 21 (2012), 107.

[8] BATORY M., BATORY D., GRABARCZYK J., KACZOROWSKI W., KUPCEWICZ B., MITURA K., NASTI T.H., YUSUF N., NIEDZIELSKI P., J. Nanosci. Nanotechno., 12 (2012), 9037.

[9] CZERNIAK-RECZULSKA M., NIEDZIELSKI P., BALCERCZYK A., BARTOSZ G., KAROWICZ-BILINSKA A., MITURA K., J. Nanosci. Nanotechno., 10 (2010), 1065.

[10] TAGUCHI G., System of experimental design, UNIPUB/Kraus International Publications New York, 1987.

[11] PARK K.S., KIM H.G., KIM Y.H., PARK C.H., KIM K.D., Chem. Eng. Res. Des., 89 (2011), 2389.

[12] ALAMOLHODA S., HESHMATI-MANESH S., ATAIE A., Adv. Powder Technol., 23 (2012), 343.

[13] AKHGAR B.N., PAZOUKI M., RANJBAR M., HOSSEINNIA A., SALARIAN R., Chem. Eng. Res. Des., 90 (2012), 220.

[14] ZHANG F.L., ZHU M., WANG C.Y., Int. J. Refract. Met. H., 26 (2008), 329.

[15] FERRARI A.C., ROBERTSON J., Phys. Rev. B, 61 (2000), 14095.

[16] CUI W.G., LAI Q.B., ZHANG L., WANG F.M., Surf. Coat. Tech., 205 (7) (2010), 1995.

[17] CHU P.K., LI L., Mater. Chem. Phys., 96 (2 - 3) (2006), 253.

[18] TAI F.C., LEE S.C., WEI C.H., TYAN S.L., Mater. Trans., 47 (2006), 1847.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2017: 0.90

SCImago Journal Rank (SJR) 2017: 0.275
Source Normalized Impact per Paper (SNIP) 2017: 0.471

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 93 15
PDF Downloads 16 16 1