Effect of substrate temperature on structural and optical properties of spray deposited ZnO thin films

Open access

Abstract

Undoped ZnO thin films have been prepared on glass substrates at different substrate temperatures by spray pyrolysis method. The effect of temperature on the structural, morphological and optical properties of n-type ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the ZnO thin films were polycrystalline with wurtzite structure. Scanning electron microscopy (SEM) measurements showed that the surface morphology of the films changed with temperature. The studies demonstrated that the ZnO film had a transmission of about 85 % and energy gap of 3.28 eV at 450 °C. The RBS measurements revealed that ZnO layers with a thickness up to 200 nm had a good stoichiometry.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] AMBIA M.G. ISLAM M.N. OBAIDUL HAKIM M. Sol. Ener. Mat. Sol. C. 28 (2) (1992) 103.

  • [2] GOYAL D.J. AGASHE C. TAKWALE M.G. MARATHE B.R. BHIDE V.G. J. Mater. Sci. 27 (17) (1992) 4705.

  • [3] BAKHA Y. BENDIMERAD K.M. HAMZAOUI S. Eur.Phys. J. - Appl. Phys. 55 (2011) 30103.

  • [4] FAY S. SHAH A. Zinc Oxide Grown by CVD Process as Transparent Contact for Thin Film Solar Cell Applications in: ELLMER K. KLEIN A. RECH B. (Eds.) Transparent Conductive Zinc Oxide. Basics and Applications in Thin Film Solar Cells Springer Series in Materials Science Vol. 104 Springer Berlin Heidelberg 2008 pp. 235 - 302.

  • [5] BOUDERBALA M. HAMZAOUI S. STAMBOULI A.B. BOUZIANE H. Appl. Energ. 64 (1 - 4) (1999) 89.

  • [6] ZHANG X.-A. ZHANG J.-W. ZHANG W.-F. WANG D. BI Z. BIAN X.-M. HOU X. Thin Solid Films 516 (10) (2008) 3305.

  • [7] KAMALASANAN M.N. CHANDRA S. Thin Solid Films 288 (1 - 2) (1996) 112.

  • [8] OLVERA DE LA M.L. MALDONADO A. VEGA PEREZ J. SOLORZA-FERIA O. Mater. Sci. Eng. BAdv. 174 (1 - 3) (2010) 42.

  • [9] DUTTA V. Energy Procedia 3 (2011) 58.

  • [10] VIMALKUMAR T.V. POORNIMA N. SUDHA KARTHA C. VIJAYAKUMAR K.P. Appl. Surf. Sci. 256 (20) (2010) 6025.

  • [11] ASHOUR A. KAID M.A. EL-SAYED N.Z. IBRAHIM A.A. Appl. Surf. Sci. 252 (22) (2006) 7844.

  • [12] BANERJEE A.N. GOSH C.K. CHATTOPADHYA K.K. MINOURA H. SARKAR A.K. AKIBA A. KAMIYA A. ENDO T. Thin Solid Films 496 (1) (2006) 112.

  • [13] KIM H.W. KIM N.H. LEE C. RYU J.H. LEE N.E. J. Korean Phys. Soc. 44 (2004) 14.

  • [14] MA T.Y. KIM S.H. MOON H.Y. PARK G.C. KIM Y.J. KIM K.W. Jpn. J. Appl. Phys. 35 (1996) 6208.

  • [15] FAN X.M. LIAN J.S. GUO Z.X. LU H.J. J. Cryst. Growth 279 (2005) 447.

  • [16] BANERJEE A.N. GHOSH C.K. CHATTOPADHYAY K.K. MINOURA H. SARKAR A.K. AKIBA A. KAMIYA A. ENDO T. Thin Solid Films 496 (2006) 112.

  • [17] DIKOVSKA A.O. ATANASOV P.A. VASILEV C. DIMITROV I.G. STOYANCHOV T.R. J. Optoelectron. Adv. M. 7 (2005) 1329.

  • [18] SCHERRER P. Nachr. Ges. Wiss. Göttingen 2 (1918) 96.

  • [19] SCHRODER D.K. Semiconductor Material and Device Characterization Wiley New York 1990.

  • [20] CULLITY B.D. Elements of X-ray Diffraction Addison-Wesley Reading MA 1978 p. 102.

  • [21] PRASADA RAO T. SANTHOSH KUMAR M.C. ANBUMOZHI ANGAYARKANNI S. ASHOK M. J. Alloy. Compd. 485 (1 - 2) (2009) 413.

  • [22] ILICAN S. CAGLAR M. CAGLAR Y. Mater. Sci.- Poland 25 (2007) 715.

  • [23] CRACIUN V. PERRIERE J. BASSIM N. SINGH R.K. CRACIUN D. SPEAR J. Appl. Phys. A 25 (1999) 531.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 504 239 1
PDF Downloads 206 118 3