A theoretical study on 2-chloro-5-(2-hydroxyethyl)-4-methoxy-6-methylpyrimidine by DFT/ab initio calculations

Open access

Abstract

Quantum chemical calculations have been performed to study the molecular geometry, 1H and 13C NMR chemical shifts, conformational, natural bond orbital (NBO) and nonlinear optical (NLO) properties of the 2-chloro-5-(2-hydroxyethyl)-4- methoxy-6-methylpyrimidine molecule in the ground state using DFT and HF methods with 6-311++G(d,p) basis set. The optimized geometric parameters and 1H and 13C NMR chemical shifts have been compared with the experimental values of the title molecule. The results of the calculations show excellent agreement between the experimental and calculated frequencies at B3LYP/6-311++G(d,p) level. In order to provide a full understanding of the properties of the title molecule in the context of molecular orbital picture, the highest occupied molecular energy level (EHOMO), the lowest unoccupied molecular energy level (ELUMO), the energy difference (DE) between EHOMO and ELUMO, electronegativity (χ), hardness (η) and softness (S) have been calculated using B3LYP/6-311++G(d,p) and HF/6-311++G(d,p) levels. The calculated HOMO and LUMO energies show that the charge transfer occurs within the title molecule.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] KRALJEVIC T.G. KRIŠTAFOR S. ŠUMAN L. Bioorgan. Med. Chem. 18 (2010) 2704.

  • [2] PIR H. GÜNAY N. TAMER Ö. Spectrochim. Acta A 112 (2013) 331.

  • [3] DAS P. SPEARS C.P. SHAHINIAN A.H. Bioorgan. Med. Chem. Lett. 6 (1996) 2477 .

  • [4] BABA M. DE CLERCQ E. TANAKA H. Mol. Pharmacol. 39 (1991) 805.

  • [5] BALZARINI J. KARLSSON A. DE CLERCQ E. Mol. Pharmacol. 44 (1993) 694.

  • [6] MAI A. ARTICO M. SBARDELLA G. J. Med. Chem. 40 (1997) 1447.

  • [7] PREKUPEC S. MAKUC D. PLAVEC J. Antivir. Chem. Chemother. 16 (2005) 327.

  • [8] PREKUPEC S. MAKUC D. PLAVEC J. J. Med. Chem. 50 (2007) 3037.

  • [9] HEIDELBERGER C. Pyrimidine and Pyrimidine Antimetabolites in: HOLLAND J.F. FREI E. (Eds.) Cancer Medicine Lea and Febiger Philadelphia 1984.

  • [10] SIGMOND J. PETERS G.J. Nucleos. Nucleot. Nucl. 24 (2005) 1997.

  • [11] DE CLERCQ E. WALKER R.T. Pharmacol. Therapeut. 26 (1984) 1.

  • [12] DE CLERCQ E. DESCAMPS J. DE SOMER P. P. Natl. Acad. Sci. USA 76 (1979) 2947.

  • [13] CHU C.K. SCHINAZI R.F. AHN M.K. J. Med. Chem. 32 (1989) 612.

  • [14] GRIENGL H. BODENTEICH M. HAYDEN W. J. Med. Chem. 28 (1985) 1679.

  • [15] DE CLERCQ E. BALZARINI J. DESCAMPS J. Biochem. Pharmacol. 30 (1981) 495.

  • [16] BARR P.J. ROBINS M.J. SANTI D.V. Biochemistry- US 22 (1983) 1696.

  • [17] PROBER J.M. TRAINER G.L. DAM R.J. Science 238 (1987) 336.

  • [18] POVSIC T.J. DERVAN P.B. J. Am. Chem. Soc. 112 (1990) 9428.

  • [19] AVCI D. ATALAY Y. Int. J. Quantum Chem. 109 (2009) 328.

  • [20] PIR H. GUNAY N. TAMER ¨O. Mater. Sci.-Poland 31 (2013) 357.

  • [21] PIR H. GUNAY N. AVCI D. Spectrochim. Acta A 96 (2012) 916.

  • [22] AVCI D. BASOGLU A. ATALAY Y. Int. J. Quantum Chem. 111 (2011) 130.

  • [23] BAŞOĞLU A. AVCI D. ATALAY Y. Spectrochim. Acta A 79 (2011) 1425.

  • [24] AVCI D. ATALAY Y. Struct. Chem. 20 (2009) 185.

  • [25] DINÇER M. AVCI D. ŞEKERCI M. J. Mol. Model. 14 (2008) 823.

  • [26] AVCI D. Spectrochim. Acta A 82 (2011) 37.

  • [27] PIR H. GUNAY N. AVCI D. Indian J. Phys. 86 (2012) 1049.

  • [28] BECKE A.D. J. Chem. Phys. 98 (1993) 5648.

  • [29] LEE C. YANG W. PARR R.G. Phys. Rev. B 37 (1988) 785.

  • [30] FRISCH M. J. TRUCKS G. W. SCHLEGEL H. B. Gaussian 09 Gaussian Inc. Wallingford CT 2009.

  • [31] DENNINGTON R. KEITH T. MILLAM J. GaussView 2009.

  • [32] DITCHFIELD R. Mol. Phys. 27 (1974) 789.

  • [33] ROHLING C.M. ALLEN L.C. DITCHFIELD R. Chem. Phys. 87 (1984) 9.

  • [34] AVCI D. ATALAY Y. Int. J. Quantum Chem. 109 (2009) 328.

  • [35] KEITH T.A. BADER R.F.W. Chem. Phys. Lett. 94 (1992) 1.

  • [36] KEITH T.A. BADER R.F.W. Chem. Phys. Lett. 210 (1993) 223.

  • [37] ATALAY Y. AVCI D. BASOGLU A. Spectrochim. Acta A 71 (2008) 760.

  • [38] DEL GIUDICE M.R. SETTIMJ G. DELFINI M. Tetrahedron 40 (1984) 4067.

  • [39] WEINHOLD F. LANDIS C. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective. Cambridge University Press Cambridge 2005.

  • [40] REED A.E. CURTISS L.A. WEINHOLD F. Chem. Rev. 88 (1988) 899.

  • [41] REED A.E. WEINSTOCK R.B. WEINHOLD F. J. Chem. Phys. 83 (1985) 735.

  • [42] CHOCHOLOUSOVA J. SPIRKO V.V. HOBZA P. Phys. Chem. Chem. Phys. 6 (2000) 37.

  • [43] FUKUI K. Science 218 (1982) 747.

  • [44] PEARSON R.G. P. Natl. Acad. Sci. USA 83 (1986) 8440.

  • [45] ZHANG C.R. CHEM H.S. WANG G.H. Chem. Res. Chinese U. 20 (2004) 640.

  • [46] KUMAR P.S. VASUDEVAN K. PRAKASAM A. Spectrochim. Acta A 77 (2010) 45.

  • [47] BUCKINGHAM A.D. Adv. Chem. Phys. 12 (1967) 107.

  • [48] CHRISTIANSEN O. GAUSS J. STANTON J.F. Chem. Phys. Lett. 305 (1999) 147.

  • [49] BLOEMBERGEN N. Nonlinear optics Benjamin New York 1965.

  • [50] LANE N.F. Rev. Mod. Phys. 52 (1980) 29.

  • [51] BIRNBAUM G. (Ed.) Phenomena Induced by Intermolecular Interactions Plenum New York 1980.

  • [52] MAROULIS G. J. Chem. Phys. 113 (2000) 1813.

  • [53] AVCI D. BAŞOĞLU A. ATALAY Y. Int. J. Quantum Chem. 111 (2011) 130.

  • [54] ÖNER N. TAMER Ö. AVCI D. ATALAY Y. Spectrochim. Acta A 133 (2014) 542.

  • [55] TAMER Ö DEGE N. DEMIRTAS¸ G. AVCI D. ATALAY Y. MACIT M. S¸ AHIN S. J. Mol. Struct. 1063 (2014) 295.

  • [56] FLEMING I. Frontier Orbitals and Organic Chemical Reactions John Wiley and Sons New York 1976.

  • [57] MULLIKEN R.S. J. Chem. Phys. 23 (1955) 1833.

  • [58] MUKHERJEE V. SINGH N.P. YADAV R.A. Spectrochim. Acta A 73 (2009) 249.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 92 0
PDF Downloads 112 73 0