Grain growth kinetics for B2O3-doped ZnO ceramics

Open access

Abstract

Grain growth kinetics in 0.1 to 2 mol % B2O3-added ZnO ceramics was studied by using a simplified phenomenological grain growth kinetics equation Gn = K0 · t · exp(-Q/RT) together with the physical properties of sintered samples. The samples, prepared by conventional ceramics processing techniques, were sintered at temperatures between 1050 to 1250 °C for 1, 2, 3, 5 and 10 hours in air. The kinetic grain growth exponent value (n) and the activation energy for the grain growth of the 0.1 mol % B2O3-doped ZnO ceramics were found to be 2.8 and 332 kJ/mol, respectively. By increasing B2O3 content to 1 mol %, the grain growth exponent value (n) and the activation energy decreased to 2 and 238 kJ/mol, respectively. The XRD study revealed the presence of a second phase, Zn3B2O6 formed when the B2O3 content was > 1 mol %. The formation of Zn3B2O6 phase gave rise to an increase of the grain growth kinetic exponent and the grain growth activation energy. The kinetic grain growth exponent value (n) and the activation energy for the grain growth of the 2 mol % B2O3-doped ZnO ceramics were found to be 3 and 307 kJ/mol, respectively. This can be attributed to the second particle drag (pinning) mechanism in the liquid phase sintering.

[1] SUCHEA M., CHRISTOULAKIS S., MOSCHOVIS K., KATSARAKIS N., KIRIAKIDIS G., Thin Solid Films, 515 (2006), 551.

[2] SENDA T., BRADT R.C., J. Am. Ceram. Soc., 73 (1990), 106.

[3] LOKHANDE B.J., PATIL P.S., UPLANE M.D., Physica B, 302 - 303 (2001), 59.

[4] CHEN X.L., XU B.H., XUE J.M., ZHAO Y., WEI C.C., SUN J., WANG Y., ZHANG X.D., GENG X.H., Thin Solid Films, 515 (2007), 3753.

[5] ISHIZAKI H., IMAIZUMI M., MATSUDA S., IZAKI M., ITO T., Thin Solid Films, 411 (2002), 65.

[6] TAHAR R.B.H., TAHAR N.B.H., J. Mater. Sci., 40 (2005), 5285.

[7] GAO P.X., WANG Z.L., J. Appl. Phys., 97 (2005), 044304 1.

[8] ISLAM M.N., SAMANTARAY B.K., CHOPRA K.L., ACHARYA H.N., Sol. Energ. Mat. Sol. C., 29 (1993), 27.

[9] OBA F., NISHITANI S. R., ISOTANI S., ADACHI H., TANAKA I., J. Appl. Phys., 90 (2001), 824.

[10] HAGEMARK K. I., J. Solid State Chem., 16 (1976), 293.

[11] MAHAN G.D., J. Appl. Phys., 54 (1983), 3825.

[12] ZIEGLER E., HEINRICH A., OPPERMANN H., STR¨O VER G., Phys. Status Solidi A, 66 (1981), 635.

[13] NEUMANN G., Phys. Status Solidi B, 105 (1981), 605.

[14] MARKEVICH I. V., KUSHNIRENKO V. I., BORKOVSKA L. V., BULAKH B. M., Phys. Status Solidi C, 3 (4) (2006), 942.

[15] HAUSMANN A., SCHALLENBERGER B., Z. Phys. B, 31 (1978), 269.

[16] HAN J., MANTAS P.Q., SENOS A.M.R., J. Eur. Ceram. Soc., 21 (2001), 1883.

[17] YOON M.H., LEE S.H., PARK H.L., KIM H.K., JANG M.S., J. Mater. Sci. Lett., 21 (2002), 1703.

[18] ZHANG Y., HAN J., Mater. Lett., 60 (2006), 2522.

[19] TOPLAN O., GUNAY V., OZKAN T.O., Ceram. Int., 23 (1997), 251.

[20] HAN J., MANTAS P.Q., SENOS A.M.R., J. Eur. Ceram. Soc., 20 (2000), 2753.

[21] ABDUEV A.K., ASVAROV S., AKHMEDOV A.K., KAMILOV I.K., US Patent 20090218735 A1, 3. Sep. 2009.

[22] KUSHNIRENKO V.I., MARKEVICH I.V., RUSAVSKY A.V., Radiat. Meas., 45 (2010), 468.

[23] LEVINSON L. M., US patent 4460623, 17. Jul. 1984.

[24] LIU F., XU G., DUAN L., LI Y., LI Y., CUI P., J. Alloy. Compd., 509 (2011), L56.

[25] GLOT A. B., MAZURIK S. V., Inorg. Mater.+, 36 (2000), 636.

[26] CHENG L., LI G., YUAN K., MENG L., ZHENG L., J. Am. Ceram. Soc., 95 (2012), 1004.

[27] GUPTA T. K., COBLE R. L., J. Am. Ceram. Soc., 51 (1968), 521.

[28] NORRIS L.F., PARRAVANO G., J. Am. Ceram. Soc., 46 (1963), 449.

[29] NICHOLSON G.C., J. Am. Ceram. Soc., 48 (1965), 214.

[30] WONG J., J. Appl. Phys., 51 (1980), 4453.

[31] ASOKAN T., IYENGAR G.N., NAGABHUSHANA G.R., J. Mater. Sci., 22 (1987), 2229.

[32] FAN J., SALE F.R., J. Am. Ceram. Soc., 20 (2000), 2743.

[33] HNG H. H., HALIM L., Mater. Lett., 57 (2003), 1411.

[34] HAN J., MANTAS P.Q., SENOS A.M.R., J. Mater. Res., 16 (2001), 459.

[35] BRADT R.C., NUNES S.I., SENDA T., SUZUKI H., BURKETT S.L., Grain Growth, in: GERMAN R.M., MESSING G.L., CORNWALL R.G. (Eds.), Sintering Technology, Marcel Dekker, New York, 1996, p. 389.

Journal Information


IMPACT FACTOR 2017: 0.854
5-year IMPACT FACTOR: 0.794



CiteScore 2016: 0.64

SCImago Journal Rank (SJR) 2015: 0.226
Source Normalized Impact per Paper (SNIP) 2015: 0.431

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 45 45 28
PDF Downloads 13 13 5